
RGW Dedup

● Limits:
○ Doesn’t support encrypted objects (RGW_ATTR_CRYPT_MODE)
○ Doesn’t support Copy between 2 remote objects
○ Doesn’t support Copy between 2 different pools
○ Doesn’t support Copy between objects with different placement rules

● Existing Server-Side Copy mechanism
○ Increment ref-count on the SRC tail-objects
○ If the TGT existed before -> move it to be BG-Deleted
○ Copy the Head Object with all its attributes and Manifest from SRC to the TGT

■ If copy fails it will rollback the ref-counts on the SRC tail-objects
● New Mode for Dedup:

○ Keep the existing TGT head-Object with all its attributes
■ No need to copy data from the SRC
■ Skip reading the SRC Object and only read its manifest from the OMAP
■ Only the manifest will be changed on the TGT head-object

○ Read SRC/TGT etag, SHA256, version, size, manifest,..
■ Do we need an CLS or can we trust rados get-attribute to run atomically?

○ Increment ref-count on the SRC tail-objects
■ Rollback on any failure

○ Need a CLS on the TGT to perform the followings Atomically:
■ Verify TGT has the correct etag/SHA256/version/size

● Abort the copy on a mismatch and rollback the ref-count on the
SRC tail-objects

■ Store the TGT manifest on a persistent store
■ Overwrite the TGT manifest in the head-object with the SRC manifest
■ BG-Delete of the tail objects of the TGT (using the stored manifest)

● Open Issues:
○ Do we have code to BG-Delete tail objects while keeping the object active?

■ Maybe we can use the LC code?
■ Need to protect against accesses to tail objects while they are being

deleted
■ [update] according to C. B. the existing GC code handles this correctly

○ Future enhancement:
Do we support a head object with no data and tail objects with data?

■ If so can we split the head-object into an empty head (with attributes only)
and move the data to a new named tail-object on the same OSD???

■ Can try and choose a name according to rados hashing with explicit_objs



Division of labor

● Double sharding - Ingress sharding by S3 object-name and Egress sharding by MD5
● Ingress sharding by object-name

○ Shard the object name space into N shards - set N to a high value (e.g. N=128)
and shard the objects-space into many small units

■ Each rgw will grab one shard (using compare-swap on rados obj)
■ Upon completion of the current shard try and grab the next available

shard (using compare-swap on rados obj)
■ This means rgw will perform multiple listing for all buckets

● [update] C. B. suggested passing sharding parameters to the
listing call causing it to skip objs belonging to other shards

■ It can also lead to uneven execution with the last shards being handled by
a sub-group of the rgw members

■ It has the benefit of being more robust and eliminates the need for an
external coordination between rgw members

○ Each rgw will read attributes for all objects in its assigned/owned shard
○ Output the read records into M egress shards

● Egress sharding by MD5
○ Shard the MD5 space into M shards
○ Iterate over all buckets and read object-count from bucket stats
○ Set M to be global_object_count / 16M
○ Each shard will contain about 16M records

■ With 32 Bytes per table entry we will need 1GB to process a single shard
○ Each rgw will grab one shard (using compare-swap on rados obj)
○ Upon completion of the current shard try and grab the next available shard

● No Inline dedup operations/updates as request can arrive at any rgw, but only a single
rgw holds the shard managing a specific MD5 ETAG

● All operations will be done periodically from a BG-Task
● Drop all state between cycles

○ Each cycle will collect MD5 ETAGS from all objects



Step 0: preparation:

● Shard the object space to N shards
● Each rgw process similar number of disjointed S3-Object
● Skip objects smaller than the threshold (current threshold is a full rados object of 4MB)
● For each S3-Object find its head-object and read attributes from it into a record

○ MD5
○ Length
○ Part-count (for multi-part)
○ SHA256 (if exists)
○ version
○ Manifest
○ Shared-Manifest-Object (SMO) or Dedicated-Manifest-Object (DMO)
○ The head-object rados-name (which we already got)

■ No need for head-object name if this is a Shared-Manifest-Object
● Shard the records by MD5

○ This is another shard simply dividing the MD5 space by a given count
● Maintain M output stream-buffers mapped to the M MD5 shards

○ Each stream is written to a 4MB buffer and when the buffer is full it is written to
rados and a new buffer is opened

■ Can use a smaller buffer (1MB/512KB..) if memory is scarce
○ Each buffer is divided into 4-16 KB blocks (256-1024 blocks per 4MB buffer)
○ Each Block contains multiple Records (each record describes a single S3 Object)

and a short block header
○ The Records are appended to the current open block without crossing block

boundaries (the leftover space is padded with zeros)



Step 1: Table Construction:

● Each rgw reads all its designated streams created by the N rgw sequentially
● Preallocate an open addressing hash-table with enough space for all the entries

○ Read the summary table from each rgw member to calculate the entries count
● Hashtable entries format:

○ Key: 16B MD 5 + 4B Length + 2B Part_Count
○ Data: 4B disk-block-index + 1B flags +1B pad

■ Flags:
● Shared-Manifest-Object or Dedicated-Manifest-Object
● Singleton or Multicopy entry
● Has valid SHA256 or need to be calculated

○ Hash-Links: 4B indices into the table instead of pointers (allow 4B unique MD5)
○ Total is 32B per a unique MD5

● Read the 4MB buffers one after another and iterate over all the records in the 4MB buffer
● Lookup the MD5 in the memory-hashtable and if doesn’t exist add a new entry

○ Set flags:
■ Shared-Manifest-Object or Dedicated-Manifest-Object based on the

record values
■ Singleton (as it is the first time we saw it)
■ Has valid SHA256 or need to be calculated based on the record values

● If a hashtable entry already exists for the record’s MD5:
○ If the hashtable-entry is a Shared-Manifest-Object:

■ If the new record is a Shared-Manifest-Object -> skip it
■ If the new record is a Dedicated-Manifest-Object -> turn off the

hashtable-entry singleton bit (as we will dedup the entry)
○ If the hashtable-entry is a Dedicated-Manifest-Object:

■ If the new record is Shared-Manifest-Object -> change the
hashtable-entry setting the new record index in the entry and updating the
SHA256 bit based on the new record values (should probably be set)

● Change the entry flag from Dedicated-Manifest-Object to
Shared-Manifest-Object

● Turn off the singleton bit if it is on (as we will dedup the entry)
■ If the new record is a Dedicated-Manifest-Object:

● Turn off the singleton bit if it is on (as we will dedup the entry)



Step 2: Dedup:

● Purge all entries not marked for-dedup (i.e. singleton bit is set) from the system
● Iterate again over the disk-records reading 4MB buffers each time:

○ If the record is marked as Shared-Manifest-Object -> skip it
■ Assert that the SRC-entry in the table is marked as a dedup entry

○ Lookup the record MD5 in the hashtable:
■ if doesn’t exist -> skip it (it is a singleton and it was purged)
■ If the record block-index matches the hashtable entry -> skip it (it is the

SRC object)
■ All other entries are Dedicated-Manifest-Objects with a valid SRC object

○ If the SRC/TGT object or both doesn’t have a valid SHA256 -> read the object
data from disk and calculate the SHA256

■ Before reading the OBJ data verify that its MD5/version hasn’t changed
■ After completing the SHA256 calculation update the SHA256 attribute in

the head-object (using a CLS to verify that its MD5/vesion hasn’t change)
■ Update the SHA256 on the object disk-record for SRC OBJ (if it didn’t

have SHA256 before) and set the SHA256 bit in hashtable entry
○ Read the SRC object attributes from the disk record using the stored block-index

■ Compare the SHA256 and if they differ skip the new entry
○ Take the manifest from SRC-Object disk-record and inc-ref for all the tail objs

■ If one or more of the tail objs changed since we created the disk-record
abort the copy operation

● Change the MD5 SRC obj in the table to the TGT entry properties
● Update the SHA256 field in the disk-record of the new SRC entry

(which used to be TGT before)
■ Atomically update the TGT head-object:

● Verify the MD5/SHA256/version are the same
○ If not abort the operation and rollback the ref-inc on the

SRC tail objects
● Store the TGT manifest in a persistent-store
● Overwrite the manifest in the TGT head-object with the one read

from the SRC-Disk-Record
● Piggyback 2 extra attributes updates for the TGT head:

○ SHA256
○ Shared-Manifest with an 8 Bytes hash of the manifest

■ If all went fine -> set the previous manifest of the TGT for BG-delete
○ When the operation completed successfully:

■ If the SRC Record was marked as Dedicated-Manifest-Object add a
Shared-Manifest-Object attribute to its head-object with 8 Bytes hash of
the manifest



Data Structures

● The disk is broken into fixed size blocks (8-32KB) with multiple records each
● Disk-Blocks

○ Fixed size unit identified by a 32 bit disk-block-index
○ Always read the full disk-block

■ Updates can be done by 4KB random-write
○ Starts with a block head:

■ 2 Bytes magic number
■ 2 bytes records count
■ 4 bytes CRC16 of the block data

● Disk-Record:
○ 2 Bytes record-len
○ 2 Bytes Part-count (for multi-part)
○ 4 Bytes obj-size
○ 8 Bytes obj-version
○ 16 Bytes MD5
○ 32 Bytes SHA-256 (set to all zeros until calculated)
○ 8 bytes Shared-Manifest-Object or all zeros for a Dedicated-Manifest-Object
○ Variable-length Manifest (probably no more than 1KB)

■ A few hundreds bytes normally
○ Variable-length head-object rados-name (for Dedicated-Manifest-Objects only)

■ Rados name is up to 1 KB long, but normally much shorter
● MD5 Hashtable:

○ Map from an MD5 to disk-block-index of its SRC object
○ Open addressing table hashing with preallocation for all entries
○ Key: 16B MD5 + 4B Length + 2B Part_Count
○ Data: 4B disk-block-index + 1B flags +1B pad

■ Flags:
● Shared-Manifest-Object or Dedicated-Manifest-Object
● Singleton or Multicopy entry
● Has valid SHA256 or needs to be calculated

○ Hash-Links: 4B indices into the table instead of pointers (allow 4B unique MD5)
○ Total is 32B per a unique MD5

● Open Tasks table (about 1 MB total space):
○ A table holding 256 open tasks
○ Tasks are indexed by the SRC Object MD5

■ Prevents multiple actions on the same SRC object
○ Each Task holds the full disk-record of both the SRC and TGT
○ State variables
○ Operation log for rollback



Glossary:

● Disk Stream - sequential disk data for a given MD5 shard
● Disk-Block - fixed size sequential disk unit (8-32KB) with multiple records
● Disk-Block-Index - a relative index for a block within a disk stream
● Disk-Record - metadata for a single S3 object
● Table-Entry - Describing the SRC object of a dedup for all objects sharing an MD5
● Singleton Object - Only a single instance of the MD5 has been observed
● Multicopy Object - Multiple instances of the same MD5 have been observed
● Shared-Manifest-Object (SMO) vs. Dedicated-Manifest-Object (DMO)


