Collection of memory_pressure can be enabled by writing 1 to the cpuset file 'memory_pressure_enabled', which is only for cpuset-v1. Therefore, move the corresponding code to cpuset-v1.c. Currently, the 'fmeter_init' and 'fmeter_getrate' functions are called at cpuset.c, so expose them to cpuset.c. Signed-off-by: Chen Ridong <chenridong@xxxxxxxxxx> --- kernel/cgroup/cpuset-internal.h | 7 ++ kernel/cgroup/cpuset-v1.c | 134 ++++++++++++++++++++++++++++++++ kernel/cgroup/cpuset.c | 134 -------------------------------- 3 files changed, 141 insertions(+), 134 deletions(-) diff --git a/kernel/cgroup/cpuset-internal.h b/kernel/cgroup/cpuset-internal.h index 333666a7a947..83795873dac0 100644 --- a/kernel/cgroup/cpuset-internal.h +++ b/kernel/cgroup/cpuset-internal.h @@ -238,4 +238,11 @@ static inline int is_spread_slab(const struct cpuset *cs) return test_bit(CS_SPREAD_SLAB, &cs->flags); } +/* + * cpuset-v1.c + */ + +void fmeter_init(struct fmeter *fmp); +int fmeter_getrate(struct fmeter *fmp); + #endif /* __CPUSET_INTERNAL_H */ diff --git a/kernel/cgroup/cpuset-v1.c b/kernel/cgroup/cpuset-v1.c index ae166eb4f75d..f17ba44bc566 100644 --- a/kernel/cgroup/cpuset-v1.c +++ b/kernel/cgroup/cpuset-v1.c @@ -2,3 +2,137 @@ #include "cpuset-internal.h" +/* + * Frequency meter - How fast is some event occurring? + * + * These routines manage a digitally filtered, constant time based, + * event frequency meter. There are four routines: + * fmeter_init() - initialize a frequency meter. + * fmeter_markevent() - called each time the event happens. + * fmeter_getrate() - returns the recent rate of such events. + * fmeter_update() - internal routine used to update fmeter. + * + * A common data structure is passed to each of these routines, + * which is used to keep track of the state required to manage the + * frequency meter and its digital filter. + * + * The filter works on the number of events marked per unit time. + * The filter is single-pole low-pass recursive (IIR). The time unit + * is 1 second. Arithmetic is done using 32-bit integers scaled to + * simulate 3 decimal digits of precision (multiplied by 1000). + * + * With an FM_COEF of 933, and a time base of 1 second, the filter + * has a half-life of 10 seconds, meaning that if the events quit + * happening, then the rate returned from the fmeter_getrate() + * will be cut in half each 10 seconds, until it converges to zero. + * + * It is not worth doing a real infinitely recursive filter. If more + * than FM_MAXTICKS ticks have elapsed since the last filter event, + * just compute FM_MAXTICKS ticks worth, by which point the level + * will be stable. + * + * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid + * arithmetic overflow in the fmeter_update() routine. + * + * Given the simple 32 bit integer arithmetic used, this meter works + * best for reporting rates between one per millisecond (msec) and + * one per 32 (approx) seconds. At constant rates faster than one + * per msec it maxes out at values just under 1,000,000. At constant + * rates between one per msec, and one per second it will stabilize + * to a value N*1000, where N is the rate of events per second. + * At constant rates between one per second and one per 32 seconds, + * it will be choppy, moving up on the seconds that have an event, + * and then decaying until the next event. At rates slower than + * about one in 32 seconds, it decays all the way back to zero between + * each event. + */ + +#define FM_COEF 933 /* coefficient for half-life of 10 secs */ +#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ +#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ +#define FM_SCALE 1000 /* faux fixed point scale */ + +/* Initialize a frequency meter */ +void fmeter_init(struct fmeter *fmp) +{ + fmp->cnt = 0; + fmp->val = 0; + fmp->time = 0; + spin_lock_init(&fmp->lock); +} + +/* Internal meter update - process cnt events and update value */ +static void fmeter_update(struct fmeter *fmp) +{ + time64_t now; + u32 ticks; + + now = ktime_get_seconds(); + ticks = now - fmp->time; + + if (ticks == 0) + return; + + ticks = min(FM_MAXTICKS, ticks); + while (ticks-- > 0) + fmp->val = (FM_COEF * fmp->val) / FM_SCALE; + fmp->time = now; + + fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; + fmp->cnt = 0; +} + +/* Process any previous ticks, then bump cnt by one (times scale). */ +static void fmeter_markevent(struct fmeter *fmp) +{ + spin_lock(&fmp->lock); + fmeter_update(fmp); + fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); + spin_unlock(&fmp->lock); +} + +/* Process any previous ticks, then return current value. */ +int fmeter_getrate(struct fmeter *fmp) +{ + int val; + + spin_lock(&fmp->lock); + fmeter_update(fmp); + val = fmp->val; + spin_unlock(&fmp->lock); + return val; +} + +/* + * Collection of memory_pressure is suppressed unless + * this flag is enabled by writing "1" to the special + * cpuset file 'memory_pressure_enabled' in the root cpuset. + */ + +int cpuset_memory_pressure_enabled __read_mostly; + +/* + * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. + * + * Keep a running average of the rate of synchronous (direct) + * page reclaim efforts initiated by tasks in each cpuset. + * + * This represents the rate at which some task in the cpuset + * ran low on memory on all nodes it was allowed to use, and + * had to enter the kernels page reclaim code in an effort to + * create more free memory by tossing clean pages or swapping + * or writing dirty pages. + * + * Display to user space in the per-cpuset read-only file + * "memory_pressure". Value displayed is an integer + * representing the recent rate of entry into the synchronous + * (direct) page reclaim by any task attached to the cpuset. + */ + +void __cpuset_memory_pressure_bump(void) +{ + rcu_read_lock(); + fmeter_markevent(&task_cs(current)->fmeter); + rcu_read_unlock(); +} + diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c index b36050e39558..342ce34c8c6f 100644 --- a/kernel/cgroup/cpuset.c +++ b/kernel/cgroup/cpuset.c @@ -2990,107 +2990,6 @@ static int update_prstate(struct cpuset *cs, int new_prs) return 0; } -/* - * Frequency meter - How fast is some event occurring? - * - * These routines manage a digitally filtered, constant time based, - * event frequency meter. There are four routines: - * fmeter_init() - initialize a frequency meter. - * fmeter_markevent() - called each time the event happens. - * fmeter_getrate() - returns the recent rate of such events. - * fmeter_update() - internal routine used to update fmeter. - * - * A common data structure is passed to each of these routines, - * which is used to keep track of the state required to manage the - * frequency meter and its digital filter. - * - * The filter works on the number of events marked per unit time. - * The filter is single-pole low-pass recursive (IIR). The time unit - * is 1 second. Arithmetic is done using 32-bit integers scaled to - * simulate 3 decimal digits of precision (multiplied by 1000). - * - * With an FM_COEF of 933, and a time base of 1 second, the filter - * has a half-life of 10 seconds, meaning that if the events quit - * happening, then the rate returned from the fmeter_getrate() - * will be cut in half each 10 seconds, until it converges to zero. - * - * It is not worth doing a real infinitely recursive filter. If more - * than FM_MAXTICKS ticks have elapsed since the last filter event, - * just compute FM_MAXTICKS ticks worth, by which point the level - * will be stable. - * - * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid - * arithmetic overflow in the fmeter_update() routine. - * - * Given the simple 32 bit integer arithmetic used, this meter works - * best for reporting rates between one per millisecond (msec) and - * one per 32 (approx) seconds. At constant rates faster than one - * per msec it maxes out at values just under 1,000,000. At constant - * rates between one per msec, and one per second it will stabilize - * to a value N*1000, where N is the rate of events per second. - * At constant rates between one per second and one per 32 seconds, - * it will be choppy, moving up on the seconds that have an event, - * and then decaying until the next event. At rates slower than - * about one in 32 seconds, it decays all the way back to zero between - * each event. - */ - -#define FM_COEF 933 /* coefficient for half-life of 10 secs */ -#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ -#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ -#define FM_SCALE 1000 /* faux fixed point scale */ - -/* Initialize a frequency meter */ -static void fmeter_init(struct fmeter *fmp) -{ - fmp->cnt = 0; - fmp->val = 0; - fmp->time = 0; - spin_lock_init(&fmp->lock); -} - -/* Internal meter update - process cnt events and update value */ -static void fmeter_update(struct fmeter *fmp) -{ - time64_t now; - u32 ticks; - - now = ktime_get_seconds(); - ticks = now - fmp->time; - - if (ticks == 0) - return; - - ticks = min(FM_MAXTICKS, ticks); - while (ticks-- > 0) - fmp->val = (FM_COEF * fmp->val) / FM_SCALE; - fmp->time = now; - - fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; - fmp->cnt = 0; -} - -/* Process any previous ticks, then bump cnt by one (times scale). */ -static void fmeter_markevent(struct fmeter *fmp) -{ - spin_lock(&fmp->lock); - fmeter_update(fmp); - fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); - spin_unlock(&fmp->lock); -} - -/* Process any previous ticks, then return current value. */ -static int fmeter_getrate(struct fmeter *fmp) -{ - int val; - - spin_lock(&fmp->lock); - fmeter_update(fmp); - val = fmp->val; - spin_unlock(&fmp->lock); - return val; -} - static struct cpuset *cpuset_attach_old_cs; /* @@ -4780,39 +4679,6 @@ void cpuset_print_current_mems_allowed(void) rcu_read_unlock(); } -/* - * Collection of memory_pressure is suppressed unless - * this flag is enabled by writing "1" to the special - * cpuset file 'memory_pressure_enabled' in the root cpuset. - */ - -int cpuset_memory_pressure_enabled __read_mostly; - -/* - * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. - * - * Keep a running average of the rate of synchronous (direct) - * page reclaim efforts initiated by tasks in each cpuset. - * - * This represents the rate at which some task in the cpuset - * ran low on memory on all nodes it was allowed to use, and - * had to enter the kernels page reclaim code in an effort to - * create more free memory by tossing clean pages or swapping - * or writing dirty pages. - * - * Display to user space in the per-cpuset read-only file - * "memory_pressure". Value displayed is an integer - * representing the recent rate of entry into the synchronous - * (direct) page reclaim by any task attached to the cpuset. - */ - -void __cpuset_memory_pressure_bump(void) -{ - rcu_read_lock(); - fmeter_markevent(&task_cs(current)->fmeter); - rcu_read_unlock(); -} - #ifdef CONFIG_PROC_PID_CPUSET /* * proc_cpuset_show() -- 2.34.1