It turns out that switching from slab_mutex to memcg_cache_ids_sem in slab_attr_store() does not completely eliminate circular locking dependency as shown by the following lockdep splat when the system is shut down: [ 2095.079697] Chain exists of: [ 2095.079697] kn->count#278 --> memcg_cache_ids_sem --> slab_mutex [ 2095.079697] [ 2095.090278] Possible unsafe locking scenario: [ 2095.090278] [ 2095.096227] CPU0 CPU1 [ 2095.100779] ---- ---- [ 2095.105331] lock(slab_mutex); [ 2095.108486] lock(memcg_cache_ids_sem); [ 2095.114961] lock(slab_mutex); [ 2095.120649] lock(kn->count#278); [ 2095.124068] [ 2095.124068] *** DEADLOCK *** To eliminate this possibility, we have to use trylock to acquire memcg_cache_ids_sem. Unlikely slab_mutex which can be acquired in many places, the memcg_cache_ids_sem write lock is only acquired in memcg_alloc_cache_id() to double the size of memcg_nr_cache_ids. So the chance of successive calls to memcg_alloc_cache_id() within a short time is pretty low. As a result, we can retry the read lock acquisition a few times if the first attempt fails. Signed-off-by: Waiman Long <longman@xxxxxxxxxx> --- include/linux/memcontrol.h | 1 + mm/memcontrol.c | 5 +++++ mm/slub.c | 25 +++++++++++++++++++++++-- 3 files changed, 29 insertions(+), 2 deletions(-) diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h index d275c72c4f8e..9285f14965b1 100644 --- a/include/linux/memcontrol.h +++ b/include/linux/memcontrol.h @@ -1379,6 +1379,7 @@ extern struct workqueue_struct *memcg_kmem_cache_wq; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); +int memcg_tryget_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 5beea03dd58a..9fa8535ff72a 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -279,6 +279,11 @@ void memcg_get_cache_ids(void) down_read(&memcg_cache_ids_sem); } +int memcg_tryget_cache_ids(void) +{ + return down_read_trylock(&memcg_cache_ids_sem); +} + void memcg_put_cache_ids(void) { up_read(&memcg_cache_ids_sem); diff --git a/mm/slub.c b/mm/slub.c index 44cb5215c17f..cf2114ca27f7 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -34,6 +34,7 @@ #include <linux/prefetch.h> #include <linux/memcontrol.h> #include <linux/random.h> +#include <linux/delay.h> #include <trace/events/kmem.h> @@ -5572,6 +5573,7 @@ static ssize_t slab_attr_store(struct kobject *kobj, !list_empty(&s->memcg_params.children)) { struct kmem_cache *c, **pcaches; int idx, max, cnt = 0; + int retries = 3; size_t size, old = s->max_attr_size; struct memcg_cache_array *arr; @@ -5585,9 +5587,28 @@ static ssize_t slab_attr_store(struct kobject *kobj, old = cmpxchg(&s->max_attr_size, size, len); } while (old != size); - memcg_get_cache_ids(); - max = memcg_nr_cache_ids; + /* + * To avoid the following circular lock chain + * + * kn->count#278 --> memcg_cache_ids_sem --> slab_mutex + * + * We need to use trylock to acquire memcg_cache_ids_sem. + * + * Since the write lock is acquired only in + * memcg_alloc_cache_id() to double the size of + * memcg_nr_cache_ids. The chance of successive + * memcg_alloc_cache_id() calls within a short time is + * very low except at the beginning where the number of + * memory cgroups is low. So we retry a few times to get + * the memcg_cache_ids_sem read lock. + */ + while (!memcg_tryget_cache_ids()) { + if (retries-- <= 0) + return -EBUSY; + msleep(100); + } + max = memcg_nr_cache_ids; pcaches = kmalloc_array(max, sizeof(void *), GFP_KERNEL); if (!pcaches) { memcg_put_cache_ids(); -- 2.18.1