Hi Johannes, I post patch v2 with proper comment you mentioned. (I am not sure if I can copy your acked-by to patch v2 directly) Miles On Fri, 2019-07-26 at 10:12 +0800, Miles Chen wrote: > This patch is sent to report an use after free in mem_cgroup_iter() > after merging commit: be2657752e9e "mm: memcg: fix use after free in > mem_cgroup_iter()". > > I work with android kernel tree (4.9 & 4.14), and the commit: > be2657752e9e "mm: memcg: fix use after free in mem_cgroup_iter()" has > been merged to the trees. However, I can still observe use after free > issues addressed in the commit be2657752e9e. > (on low-end devices, a few times this month) > > backtrace: > css_tryget <- crash here > mem_cgroup_iter > shrink_node > shrink_zones > do_try_to_free_pages > try_to_free_pages > __perform_reclaim > __alloc_pages_direct_reclaim > __alloc_pages_slowpath > __alloc_pages_nodemask > > To debug, I poisoned mem_cgroup before freeing it: > > static void __mem_cgroup_free(struct mem_cgroup *memcg) > for_each_node(node) > free_mem_cgroup_per_node_info(memcg, node); > free_percpu(memcg->stat); > + /* poison memcg before freeing it */ > + memset(memcg, 0x78, sizeof(struct mem_cgroup)); > kfree(memcg); > } > > The coredump shows the position=0xdbbc2a00 is freed. > > (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8] > $13 = {position = 0xdbbc2a00, generation = 0x2efd} > > 0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100 > 0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000 > 0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000 > 0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878 > 0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0 > 0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000 > 0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000 > 0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000 > 0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000 > 0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000 > 0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000 > 0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000 > 0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000 > 0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878 > 0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878 > 0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878 > 0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878 > > In the reclaim path, try_to_free_pages() does not setup > sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ..., > shrink_node(). > > In mem_cgroup_iter(), root is set to root_mem_cgroup because > sc->target_mem_cgroup is NULL. > It is possible to assign a memcg to root_mem_cgroup.nodeinfo.iter in > mem_cgroup_iter(). > > try_to_free_pages > struct scan_control sc = {...}, target_mem_cgroup is 0x0; > do_try_to_free_pages > shrink_zones > shrink_node > mem_cgroup *root = sc->target_mem_cgroup; > memcg = mem_cgroup_iter(root, NULL, &reclaim); > mem_cgroup_iter() > if (!root) > root = root_mem_cgroup; > ... > > css = css_next_descendant_pre(css, &root->css); > memcg = mem_cgroup_from_css(css); > cmpxchg(&iter->position, pos, memcg); > > My device uses memcg non-hierarchical mode. > When we release a memcg: invalidate_reclaim_iterators() reaches only > dead_memcg and its parents. If non-hierarchical mode is used, > invalidate_reclaim_iterators() never reaches root_mem_cgroup. > > static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) > { > struct mem_cgroup *memcg = dead_memcg; > > for (; memcg; memcg = parent_mem_cgroup(memcg) > ... > } > > So the use after free scenario looks like: > > CPU1 CPU2 > > try_to_free_pages > do_try_to_free_pages > shrink_zones > shrink_node > mem_cgroup_iter() > if (!root) > root = root_mem_cgroup; > ... > css = css_next_descendant_pre(css, &root->css); > memcg = mem_cgroup_from_css(css); > cmpxchg(&iter->position, pos, memcg); > > invalidate_reclaim_iterators(memcg); > ... > __mem_cgroup_free() > kfree(memcg); > > try_to_free_pages > do_try_to_free_pages > shrink_zones > shrink_node > mem_cgroup_iter() > if (!root) > root = root_mem_cgroup; > ... > mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); > iter = &mz->iter[reclaim->priority]; > pos = READ_ONCE(iter->position); > css_tryget(&pos->css) <- use after free > > To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter in > invalidate_reclaim_iterators(). > > Change since v1: > Add a comment to explain why we need to handle root_mem_cgroup separately. > Rename invalid_root to invalidate_root. > > Cc: Johannes Weiner <hannes@xxxxxxxxxxx> > Signed-off-by: Miles Chen <miles.chen@xxxxxxxxxxxx> > --- > mm/memcontrol.c | 38 ++++++++++++++++++++++++++++---------- > 1 file changed, 28 insertions(+), 10 deletions(-) > > diff --git a/mm/memcontrol.c b/mm/memcontrol.c > index cdbb7a84cb6e..09f2191f113b 100644 > --- a/mm/memcontrol.c > +++ b/mm/memcontrol.c > @@ -1130,26 +1130,44 @@ void mem_cgroup_iter_break(struct mem_cgroup *root, > css_put(&prev->css); > } > > -static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) > +static void __invalidate_reclaim_iterators(struct mem_cgroup *from, > + struct mem_cgroup *dead_memcg) > { > - struct mem_cgroup *memcg = dead_memcg; > struct mem_cgroup_reclaim_iter *iter; > struct mem_cgroup_per_node *mz; > int nid; > int i; > > - for (; memcg; memcg = parent_mem_cgroup(memcg)) { > - for_each_node(nid) { > - mz = mem_cgroup_nodeinfo(memcg, nid); > - for (i = 0; i <= DEF_PRIORITY; i++) { > - iter = &mz->iter[i]; > - cmpxchg(&iter->position, > - dead_memcg, NULL); > - } > + for_each_node(nid) { > + mz = mem_cgroup_nodeinfo(from, nid); > + for (i = 0; i <= DEF_PRIORITY; i++) { > + iter = &mz->iter[i]; > + cmpxchg(&iter->position, > + dead_memcg, NULL); > } > } > } > > +/* > + * When cgruop1 non-hierarchy mode is used, parent_mem_cgroup() does > + * not walk all the way up to the cgroup root (root_mem_cgroup). So > + * we have to handle dead_memcg from cgroup root separately. > + */ > +static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) > +{ > + struct mem_cgroup *memcg = dead_memcg; > + int invalidate_root = 0; > + > + for (; memcg; memcg = parent_mem_cgroup(memcg)) { > + __invalidate_reclaim_iterators(memcg, dead_memcg); > + if (memcg == root_mem_cgroup) > + invalidate_root = 1; > + } > + > + if (!invalidate_root) > + __invalidate_reclaim_iterators(root_mem_cgroup, dead_memcg); > +} > + > /** > * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy > * @memcg: hierarchy root