On Tue, Jul 23, 2019 at 02:07:00PM -0400, Chris Down wrote: > We're trying to use memory.high to limit workloads, but have found that > containment can frequently fail completely and cause OOM situations > outside of the cgroup. This happens especially with swap space -- either > when none is configured, or swap is full. These failures often also > don't have enough warning to allow one to react, whether for a human or > for a daemon monitoring PSI. > > Here is output from a simple program showing how long it takes in μsec > (column 2) to allocate a megabyte of anonymous memory (column 1) when a > cgroup is already beyond its memory high setting, and no swap is > available: > > [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > > --wait -t timeout 300 /root/mdf > [...] > 95 1035 > 96 1038 > 97 1000 > 98 1036 > 99 1048 > 100 1590 > 101 1968 > 102 1776 > 103 1863 > 104 1757 > 105 1921 > 106 1893 > 107 1760 > 108 1748 > 109 1843 > 110 1716 > 111 1924 > 112 1776 > 113 1831 > 114 1766 > 115 1836 > 116 1588 > 117 1912 > 118 1802 > 119 1857 > 120 1731 > [...] > [System OOM in 2-3 seconds] > > The delay does go up extremely marginally past the 100MB memory.high > threshold, as now we spend time scanning before returning to usermode, > but it's nowhere near enough to contain growth. It also doesn't get > worse the more pages you have, since it only considers nr_pages. > > The current situation goes against both the expectations of users of > memory.high, and our intentions as cgroup v2 developers. In > cgroup-v2.txt, we claim that we will throttle and only under "extreme > conditions" will memory.high protection be breached. Likewise, cgroup v2 > users generally also expect that memory.high should throttle workloads > as they exceed their high threshold. However, as seen above, this isn't > always how it works in practice -- even on banal setups like those with > no swap, or where swap has become exhausted, we can end up with > memory.high being breached and us having no weapons left in our arsenal > to combat runaway growth with, since reclaim is futile. > > It's also hard for system monitoring software or users to tell how bad > the situation is, as "high" events for the memcg may in some cases be > benign, and in others be catastrophic. The current status quo is that we > fail containment in a way that doesn't provide any advance warning that > things are about to go horribly wrong (for example, we are about to > invoke the kernel OOM killer). > > This patch introduces explicit throttling when reclaim is failing to > keep memcg size contained at the memory.high setting. It does so by > applying an exponential delay curve derived from the memcg's overage > compared to memory.high. In the normal case where the memcg is either > below or only marginally over its memory.high setting, no throttling > will be performed. > > This composes well with system health monitoring and remediation, as > these allocator delays are factored into PSI's memory pressure > calculations. This both creates a mechanism system administrators or > applications consuming the PSI interface to trivially see that the memcg > in question is struggling and use that to make more reasonable > decisions, and permits them enough time to act. Either of these can act > with significantly more nuance than that we can provide using the system > OOM killer. > > This is a similar idea to memory.oom_control in cgroup v1 which would > put the cgroup to sleep if the threshold was violated, but it's also > significantly improved as it results in visible memory pressure, and > also doesn't schedule indefinitely, which previously made tracing and > other introspection difficult (ie. it's clamped at 2*HZ per allocation > through MEMCG_MAX_HIGH_DELAY_JIFFIES). > > Contrast the previous results with a kernel with this patch: > > [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \ > > --wait -t timeout 300 /root/mdf > [...] > 95 1002 > 96 1000 > 97 1002 > 98 1003 > 99 1000 > 100 1043 > 101 84724 > 102 330628 > 103 610511 > 104 1016265 > 105 1503969 > 106 2391692 > 107 2872061 > 108 3248003 > 109 4791904 > 110 5759832 > 111 6912509 > 112 8127818 > 113 9472203 > 114 12287622 > 115 12480079 > 116 14144008 > 117 15808029 > 118 16384500 > 119 16383242 > 120 16384979 > [...] > > As you can see, in the normal case, memory allocation takes around 1000 > μsec. However, as we exceed our memory.high, things start to increase > exponentially, but fairly leniently at first. Our first megabyte over > memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then > the next is almost an entire second. This gets worse until we reach our > eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte. > However, this is still making forward progress, so permits tracing or > further analysis with programs like GDB. > > We use an exponential curve for our delay penalty for a few reasons: > > 1. We run mem_cgroup_handle_over_high to potentially do reclaim after > we've already performed allocations, which means that temporarily > going over memory.high by a small amount may be perfectly legitimate, > even for compliant workloads. We don't want to unduly penalise such > cases. > 2. An exponential curve (as opposed to a static or linear delay) allows > ramping up memory pressure stats more gradually, which can be useful > to work out that you have set memory.high too low, without destroying > application performance entirely. > > This patch expands on earlier work by Johannes Weiner. Thanks! > > Signed-off-by: Chris Down <chris@xxxxxxxxxxxxxx> > Cc: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> > Cc: Johannes Weiner <hannes@xxxxxxxxxxx> > Cc: Tejun Heo <tj@xxxxxxxxxx> > Cc: Roman Gushchin <guro@xxxxxx> > Cc: linux-kernel@xxxxxxxxxxxxxxx > Cc: cgroups@xxxxxxxxxxxxxxx > Cc: linux-mm@xxxxxxxxx > Cc: kernel-team@xxxxxx > --- Acked-by: Johannes Weiner <hannes@xxxxxxxxxxx>