
Build an High-Performance and High-Durability
Block Storage Service Based on Ceph

CONTENTS

About
UnitedStack

1

Ceph Code
Optimization

4

Block Storage
Service

2

High Durability

5

High
Performance

3

Operation
Expericence

6

01 About
UnitedStack

THE FIRST PART

UnitedStack - The Leading OpenStack Cloud Service
Solution Provider in China

Up to ten OpenStack/Ceph Cluster(Mostly Full-SSD)
Each Region has Tens to hundreds nodes

Beĳing 1

Guangdong 1

Region 1

Public Cloud

Customer 1

Customer 2

Customer 3

Managed Cloud

Unified Cloud Service Platform
Unified Ops

Unified SLA

Customer 4

Region 2

…… ……

U Center

02 Block Storage
Service

THE SECOND PART

• 6000 IOPS 170 MB/s 95% < 2ms SLA

• 3 copys, strong consistency, 99.99999999% durability

• All management ops in seconds

• Real-time snapshot

• Performance volume type and capacity volume type

7

Block Storage Service Highlight

8

Software used

9

Now

OpenStack Essex Folsom Havana Icehouse/
Juno Juno

Ceph 0.42 0.67.2 base on
0.67.5

base on
0.67.5

base on
0.80.7

CentOS 6.4 6.5 6.5 6.6

Qemu 0.12 0.12 base on
1.2

base on
1.2 2.0

Kernel 2.6.32 3.12.21 3.12.21 ?

10

Deployment Architecture

11

���

��������	
��

Compute/Storage Node

�����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

���

��������	
��

Compute/Storage Node

�����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

���

��������	
��

Compute/Storage Node

�����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

40 Gb Switch 40 Gb Switch

minimum deployment
12 OSD nodes and 3 monitor nodes

12

Scale-out

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
�� �����

��	
��

���

��������	
�� �����
��	
��

40 Gb Switch

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

40 Gb Switch

the minimum scale deployment
12 osd nodes

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
�� �����

��	
��

���

��������	
�� �����
��	
��

40 Gb Switch

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
�� �����

��	
��

���

��������	
�� �����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

40 Gb Switch

72 osd nodes

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
�� �����

��	
��

���

��������	
�� �����
��	
��

40 Gb Switch

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
�� �����

��	
��

���

��������	
�� �����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

40 Gb Switch

144 osd nodes

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
��

�����
��	
��

���

��������	
��
�����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

������

��������	
��

Compute/Storage Node

�����
��	
�� ��������	
��

�����
��	
��

���

��������	
��
�����
��	
��

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

Compute/Storage Node

OpenStack

nova

VM VM

LVM
SAN
Ceph

LocalFS
Swift
Ceph

GlusterFS

LocalFS
NFS

GlusterFS

glancecinder

HTTP HTTP

20 GB Image 20 GB Image

1 Gb Network: 20 GB / 100 MB = 200 s = 3 mins
10 Gb Network: 20 GB / 1000 MB = 20 s Boot Storm

18

nova

VM VM

Ceph

glancecinder

Nova, Glance, Cinder use the same storage pool
All action in seconds

No boot storm

19

QoS
• Nova
• Libvirt
• Qemu(throttle)

Two Volume Types
• Cinder multi-backend

• Ceph SSD Pool
• Ceph SATA Pool

Shared Volume
• Read Only
• Multi-attach

03 High
Performance

THE THIRD PART

OS configure

• CPU:

• Get out of CPU out of power save mode:

• echo performance | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor >/dev/null

• Cgroup:

• Bind Ceph-OSD processes to fixed cores(1-2 cores per OSD)

• Memory:

• Turn off NUMA if support NUMA in /etc/grub.conf

• Set vm.swappiness = 0

• Set vfs_cache_pressure = 50 or lower

• Block:

• echo deadline > /sys/block/sd[x]/queue/scheduler

• FileSystem

• Mount with “noatime nobarrier"

Qemu

• Throttle: Smooth IO limit algorithm(backport)

• RBD enhance: Discard and flush enhance(backport)

• Burst: Amount of bytes that can be burst at peak
speed

• Virt-scsi: Multi-queue support

IO Stack

VCPU
Thread

Qemu Main
Thread Pipe::Writer Pipe::Reader DispatchThreader OSD::OpWQ FileJournal::Writer FileJournal->finisher

FileStore::OpWQFileStore::SyncThreadPipe::WriterPipe::ReaderDispatchThreader FileStore->op_finisherFileStore->ondisk_finisherRadosClient->finisher

Qemu OSD

N
et

w
or

k

data flow

Ceph Optimization

Rule 1: Keep FD
• Facts:

• FileStore Bottleneck: Remarkable performance degraded when FD cache missed

• SSD = 480GB = 122880 Objects(4MB) = 30720 objects(16MB) in theory

• Action:

• Increase FDCache/OMapHeader to very large to hold all objects

• Increase object size to 16MB instead of 4MB(rbd default)

• Improve default OS fd limits

• Configuration:

• “filestore_omap_header_cache_size”

• “filestore_fd_cache_size”

• “rbd_chunk_size”(OpenStack Cinder)

Rule 2: Sparse Write
• Facts:

• Only few KB exists in Object for RBD usage

• Creating Snapshot/Clone/Recovery will copy full object, harmful to performance
and capacity

• Action:

• Use sparse write

• Problem:

• XFS or other local filesystems exists existing bugs for fiemap

• Configuration:

• “filestore_fiemap=true”

Rule 3: Drop default limits
• Facts:

• Default configuration value is suitable for HDD backend

• Action:

• Change all throttle-related configuration value

• Configuration:

• “filestore_wbthrottle_*”

• “filestore_queue_*”

• “journal_queue_*”

• “…” More related configs(recovery, scrub)

Rule 4: Use RBD cache
• Facts:

• RBD cache has remarkable performance
improvement for seq read/write

• Action:

• Enable RBD cache

• Configuration:

• “rbd_cache = true”

Rule 5: Keep Thread Running
• Facts:

• Ineffective thread wakeup(Context Switch)

• Action:

• Make OSD thread running for a while

• Configuration:

• Still in Pull Request(https://github.com/ceph/ceph/
pull/2727)

https://github.com/ceph/ceph/pull/2727

Rule 6: Async
Messenger(experiment)

• Facts:

• Each client need two threads on OSD side

• Painful context switch latency

• Action:

• Use Async Messenger

• Configuration:

• “ms_type = async”

• “ms_async_op_threads = 5”

Rule 7: Speed Cache
• Facts:

• Default cache container implementation isn’t suitable for large cache
capacity

• Temporary Action:

• Change cache container to “RandomCache” (Out of Master Branch)

• FDCache, OMap header cache, ObjectCacher

• Next:

• RandomCache isn’t suitable for generic situations

• Implementation Effective ARC replacing RandomCache

Result: IOPS

Based on Ceph 0.67.5 Single OSD

Result: Latency

• 4K random write for 1TB rbd image: 1.05 ms per IO

• 4K random read for 1TB rbd image: 0.5 ms per IO

• 1.5x latency performance improvement

• Outstanding large dataset performance

04 High
Durability

THE FORTH PART

Dataplacement decides durability
Crush-map decides dataplacement

so
Crush-map decides durability

Default crush setting

���

server-01

root

rack-01

server-02

server-03

server-04

server-05

server-06

server-07

server-08

���

server-09

rack-02

server-10

server-11

server-12

server-13

server-14

server-15

server-16

���

server-17

rack-03

server-18

server-19

server-20

server-21

server-22

server-23

server-24

How to compute Durability?

3 racks
24 nodes
72 osds

Ceph Reliability Model

• https://wiki.ceph.com/Development/Reliability_model

• 《CRUSH: Controlled, Scalable, Decentralized
Placement of Replicated Data》

• 《Copysets: Reducing the Frequency of Data Loss in
Cloud Storage》

• Ceph CRUSH code

Durability Formula

P = func(N, R, S, AFR)

• P: the probability of losing all copy

• N: the number of OSD in ceph pool

• R: the number of copy

• S: the number of OSD in bucket(it decide recovery
time)

• AFR: disk annualized failure rate

Failure events are
considered to be Poisson

• Failure rates are characterized in units of failures per
billion hours(FITs), and so I have tried to represent all
periodicities in FITs and all times in hours:
fit = failures in time = 1/MTTF ~= 1/MTBF = AFR/
(24*365)

• Event Probabilities, λ is the failure rate, the
probability of n failure events during time t:
Pn(λ,t) = (λt)n e-λt / n!

The probability of data loss

• OSD set: copy set, any PG beside in

• data loss: any OSD set loss

• ignore Non-Recoverable Errrors, NRE’s never happen
which might be true on scrubbed osd

Non-Recoverable Errors
NREs are read errors that cannot be

corrected by retries or ECC.

• media noise

• high-fly

• off-track writes

1. The probability of an initial OSD loss incident.

2. Having sufferred this loss, the probability of losing R-
1 OSDs is based on the recovery time.

3. Multiplied by the probability of the above. The result
is Pr。

The probability of R OSDs loss

1. M = Copy Sets Number in Ceph Pool

2. any R OSDs is C(R, N)

3. the probability of copy sets loss is Pr * M / C(R, N)

The probability of Copy sets
loss

P = Pr * M / C(R, N)

default crush setting

���

server-01

root

rack-01

server-02

server-03

server-04

server-05

server-06

server-07

server-08

���

server-09

rack-02

server-10

server-11

server-12

server-13

server-14

server-15

server-16

���

server-17

rack-03

server-18

server-19

server-20

server-21

server-22

server-23

server-24

default crush setting

AFR = 0.04
One Disk Recovery Rate = 100 MB/s

Mark Out Time = 10 mins

N = 72
S = 3 R = 1 R = 2 R = 3

C(R, N) 72 2556 119280

M 72 1728 13824

Pr 0.99 2.1*10E-4 4.6*10E-8

P 0.99 1.4*10E-4 5.4*10E-9

Nines 3 8

How to increase Reliability

Reduce recovery time
Reduce Pr
Reduce P

Why ?

server-08

if one OSD out, only two OSD to do data recovery
so

recovery time is too longer

we
need more OSD to do data recovery to

reduce recovery time

How

osd-domain

New bucket: osd-domain
reduce recovery time

Add osd-domain bucket in
crush map

���

server-01

rack-01

server-02

server-03

server-04

server-05

server-06

server-07

server-08

���

server-09

rack-02

server-10

server-11

server-12

server-13

server-14

server-15

server-16

���

server-17

rack-03

server-18

server-19

server-20

server-21

server-22

server-23

server-24

osd-domain

osd-domain

osd-domain

osd-domain

osd-domain

osd-domain

new crush map

N = 72
S = 12 R = 1 R = 2 R = 3

C(R, N) 72 2556 119280

M 72 1728 13824

Pr 0.99 7.8*10E-5 6.7*10E-9

P 0.99 5.4*10E-5 7.7*10E-10

Nines 0 4 9

Reduce M
Reduce P

Reduce the correlation
between OSDs

PG’s OSD set must in replica-domain
PG’s OSD set can not cross replica-domain

so
we reduce M

add replica-domain bucket in
crush map

���

server-01

root

rack-01

server-02

server-03

server-04

server-05

server-06

server-07

server-08

���

server-09

rack-02

server-10

server-11

server-12

server-13

server-14

server-15

server-16

���

server-17

rack-03

server-18

server-19

server-20

server-21

server-22

server-23

server-24

osd-domain

osd-domain

osd-domain

osd-domain

osd-domain

osd-domain

replica-domain

replica-domain

failure-domain

new crush map

N = 72
S = 12 R = 1 R = 2 R = 3

C(R, N) 72 2556 119280

M 72 864 3456

Pr 0.99 7.8*10E-5 6.7*10E-9

P 0.99 2.7*10E-5 1.9*10E-10

Nines 0 4 ≈ 10

Trade-off

trade off between durability and availability

new crush N R S Nines R

Ceph 72 3 3 11 31 mins

Ceph 72 3 6 10 13 mins

Ceph 72 3 12 10 6 mins

Ceph 72 3 24 9 3 mins

Shorter recovery time
Minimize the impact of SLA

Final crush map

old map:
 root
 rack
 host
 osd

new map:
 failure-domain
 replica-domain
 osd-domain
 osd

05 Operation
Expericence

THE SIXTH PART

deploy
• eNovance: puppet-ceph

• Stackforge: puppet-ceph

• UnitedStack: puppet-ceph

• reduce deploy time

• support all ceph options

• support multi disk type

• wwn-id instead of disk label

• hieradata

site.pp

common/ceph.yaml

server-80.yaml

• reduce data migration

• reduce slow requests

Operation goal: Availability

upgrade ceph

• noout: ceph osd set noout

• mark down: ceph osd down x

• restart: service ceph restart osd.x

host reboot

• migrate vm

• mark down osd

• host reboot

expand osd number

• setting crushmap

• setting recovery options

• trigger data migration

• observe data recovery rate

• observe slow request

replace disk

• be careful

• ensure replica-domain’s weight unchanged，
otherwise data(pg) migrate to another replica-domain

monitoring

• diamond: add new collector, ceph perf dump

• graphite: store data

• grafana: display

• calamari:

• alert: zabbix && ceph health

throttle model

[process].[what].[component].[attr]
�
�
���

�	���

���
��	�����

���� ���������
osd_client_messenger
osd_dispatch_client
osd_dispatch_cluster
osd_pg
osd_pg_client_w
osd_pg_client_r
osd_pg_client_rw
osd_pg_cluster_w
filestore_op_queue
filestore_journal_queue
filestore_journal
filestore_wb
filestore_leveldb
filestore_commit

���	
max_bytes
max_ops
ops
bytes
op/s
in_b/s
out_b/s
lat

add new collector in diamond
redefine metric name in graphite

Accidents
• SSD GC

• network failure

• Ceph bug

• XFS bug

• SSD corruption

• PG inconsistent

• recovery data filled network bandwidth

other ideas

• multi pools: expand don’t trigger data migration

• image migration

THANK YOU
FOR WATCHING

2014/11/02

@ UnitedStack

