Add smin/smax derivation from appropriate umin/umax values. Previously the logic was surprisingly asymmetric, trying to derive umin/umax from smin/smax (if possible), but not trying to do the same in the other direction. A simple addition to __reg64_deduce_bounds() fixes this. Added also generic comment about u64/s64 ranges and their relationship. Hopefully that helps readers to understand all the bounds deductions a bit better. Acked-by: Shung-Hsi Yu <shung-hsi.yu@xxxxxxxx> Signed-off-by: Andrii Nakryiko <andrii@xxxxxxxxxx> --- kernel/bpf/verifier.c | 70 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 70 insertions(+) diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 857d76694517..bf4193706744 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -2358,6 +2358,76 @@ static void __reg32_deduce_bounds(struct bpf_reg_state *reg) static void __reg64_deduce_bounds(struct bpf_reg_state *reg) { + /* If u64 range forms a valid s64 range (due to matching sign bit), + * try to learn from that. Let's do a bit of ASCII art to see when + * this is happening. Let's take u64 range first: + * + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * + * Valid u64 range is formed when umin and umax are anywhere in this + * range [0, U64_MAX] and umin <= umax. u64 is simple and + * straightforward. Let's where s64 range maps to this simple [0, + * U64_MAX] range, annotated below the line for comparison: + * + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * 0 S64_MAX S64_MIN -1 + * + * So s64 values basically start in the middle and then are contiguous + * to the right of it, wrapping around from -1 to 0, and then + * finishing as S64_MAX (0x7fffffffffffffff) right before S64_MIN. + * We can try drawing more visually continuity of u64 vs s64 values as + * mapped to just actual hex valued range of values. + * + * u64 start u64 end + * _______________________________________________________________ + * / \ + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * 0 S64_MAX S64_MIN -1 + * / \ + * >------------------------------ -------------------------------> + * s64 continues... s64 end s64 start s64 "midpoint" + * + * What this means is that in general, we can't always derive + * something new about u64 from any random s64 range, and vice versa. + * But we can do that in two particular cases. One is when entire + * u64/s64 range is *entirely* contained within left half of the above + * diagram or when it is *entirely* contained in the right half. I.e.: + * + * |-------------------------------|--------------------------------| + * ^ ^ ^ ^ + * A B C D + * + * [A, B] and [C, D] are contained entirely in their respective halves + * and form valid contiguous ranges as both u64 and s64 values. [A, B] + * will be non-negative both as u64 and s64 (and in fact it will be + * identical ranges no matter the signedness). [C, D] treated as s64 + * will be a range of negative values, while in u64 it will be + * non-negative range of values larger than 0x8000000000000000. + * + * Now, any other range here can't be represented in both u64 and s64 + * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid + * contiguous u64 ranges, but they are discontinuous in s64. [B, C] + * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], + * for example. Similarly, valid s64 range [D, A] (going from negative + * to positive values), would be two separate [D, U64_MAX] and [0, A] + * ranges as u64. Currently reg_state can't represent two segments per + * numeric domain, so in such situations we can only derive maximal + * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX) for s64). + * + * So we use these facts to derive umin/umax from smin/smax and vice + * versa only if they stay within the same "half". This is equivalent + * to checking sign bit: lower half will have sign bit as zero, upper + * half have sign bit 1. Below in code we simplify this by just + * casting umin/umax as smin/smax and checking if they form valid + * range, and vice versa. Those are equivalent checks. + */ + if ((s64)reg->umin_value <= (s64)reg->umax_value) { + reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); + reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); + } /* Learn sign from signed bounds. * If we cannot cross the sign boundary, then signed and unsigned bounds * are the same, so combine. This works even in the negative case, e.g. -- 2.34.1