We don't want to commit to a specific name for these. Simply call them allocated objects coming from bpf_obj_new, which is completely clear in itself. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@xxxxxxxxx> --- Documentation/bpf/bpf_design_QA.rst | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/Documentation/bpf/bpf_design_QA.rst b/Documentation/bpf/bpf_design_QA.rst index 17e774d96c5e..cec2371173d7 100644 --- a/Documentation/bpf/bpf_design_QA.rst +++ b/Documentation/bpf/bpf_design_QA.rst @@ -332,13 +332,14 @@ avoid defining types with 'bpf\_' prefix to not be broken in future releases. In other words, no backwards compatibility is guaranteed if one using a type in BTF with 'bpf\_' prefix. -Q: What is the compatibility story for special BPF types in local kptrs? ------------------------------------------------------------------------- -Q: Same as above, but for local kptrs (i.e. pointers to objects allocated using -bpf_obj_new for user defined structures). Will the kernel preserve backwards +Q: What is the compatibility story for special BPF types in allocated objects? +------------------------------------------------------------------------------ +Q: Same as above, but for allocated objects (i.e. objects allocated using +bpf_obj_new for user defined types). Will the kernel preserve backwards compatibility for these features? A: NO. Unlike map value types, there are no stability guarantees for this case. The -whole local kptr API itself is unstable (since it is exposed through kfuncs). +whole API to work with allocated objects and any support for special fields +inside them is unstable (since it is exposed through kfuncs). -- 2.38.1