This patch set fixes and improves BPF verifier's precision tracking logic for SCALAR registers. Patches #1 and #2 are bug fixes discovered while working on these changes. Patch #3 enables precision tracking for BPF programs that contain subprograms. This was disabled before and prevent any modern BPF programs that use subprograms from enjoying the benefits of SCALAR (im)precise logic. Patch #4 is few lines of code changes and many lines of explaining why those changes are correct. We establish why ignoring precise markings in current state is OK. Patch #5 build on explanation in patch #4 and pushes it to the limit by forcefully forgetting inherited precise markins. Patch #4 by itself doesn't prevent current state from having precise=true SCALARs, so patch #5 is necessary to prevent such stray precise=true registers from creeping in. Patch #6 adjusts test_align selftests to work around BPF verifier log's limitations when it comes to interactions between state output and precision backtracking output. Overall, the goal of this patch set is to make BPF verifier's state tracking a bit more efficient by trying to preserve as much generality in checkpointed states as possible. v1->v2: - adjusted patch #1 commit message to make it clear we are fixing forward step, not precision backtracking (Alexei); - moved last_idx/first_idx verbose logging up to make it clear when global func reaches the first empty state (Alexei). Andrii Nakryiko (6): bpf: propagate precision in ALU/ALU64 operations bpf: propagate precision across all frames, not just the last one bpf: allow precision tracking for programs with subprogs bpf: stop setting precise in current state bpf: aggressively forget precise markings during state checkpointing selftests/bpf: make test_align selftest more robust kernel/bpf/verifier.c | 278 +++++++++++++++--- .../testing/selftests/bpf/prog_tests/align.c | 38 ++- 2 files changed, 257 insertions(+), 59 deletions(-) -- 2.30.2