On 9/27/2022 10:01 PM, Xu Kuohai wrote:
On 9/27/2022 4:29 AM, Daniel Borkmann wrote:
[ +Mark/Florent ]
On 9/19/22 11:21 AM, Xu Kuohai wrote:
From: Xu Kuohai <xukuohai@xxxxxxxxxx>
Currently BPF_CALL is always jited to indirect call, but when target is
in the range of direct call, BPF_CALL can be jited to direct call.
For example, the following BPF_CALL
call __htab_map_lookup_elem
is always jited to an indirect call:
mov x10, #0xffffffffffff18f4
movk x10, #0x821, lsl #16
movk x10, #0x8000, lsl #32
blr x10
When the target is in the range of direct call, it can be jited to:
bl 0xfffffffffd33bc98
This patch does such jit when possible.
1. First pass, get the maximum jited image size. Since the jited image
memory is not allocated yet, the distance between jited BPF_CALL
instructon and call target is unknown, so jit all BPF_CALL to indirect
call to get the maximum image size.
2. Allocate image memory with the size caculated in step 1.
3. Second pass, determine the jited address and size for every bpf instruction.
Since image memory is now allocated and there is only one jit method for
bpf instructions other than BPF_CALL, so the jited address for the first
BPF_CALL is determined, so the distance to call target is determined, so
the first BPF_CALL is determined to be jited to direct or indirect call,
so the jited image size after the first BPF_CALL is determined. By analogy,
the jited addresses and sizes for all subsequent BPF instructions are
determined.
4. Last pass, generate the final image. The jump offset of jump instruction
whose target is within the jited image is determined in this pass, since
the target instruction address may be changed in step 3.
Wouldn't this require similar convergence process like in x86-64 JIT? You state
the jump instructions are placed in step 4 because step 3 could have changed their
offsets, but then after step 4, couldn't also again the offsets have changed for
the target addresses from 3 again in some corner cases (given emit_a64_mov_i() is
used also in jump encoding)?
IIUC, the reason why there is a convergence process on x86 is that x86's jmp
instruction length varies with the size of immediate part, so after immediate
part is adjusted, the instruction length may change accordingly, and consequently
cause the positions of subsequent instructions to change, which in turn causes
the distance between instructions to change. However, arm64's instruction size
is fixed to 4 bytes and does not change with immediate part changes. So adjusting
the immediate part of arm64 jump instruction does not result in a change in
instruction length or position.
For BPF_CALL, arguments passed to emit_call() and emit_a64_mov_i() (if called)
do not change in pass 3 and 4, so the jited result does not change. This is also
true for other non-BPF_JMP instructions.
So no convergence is required on arm64.
Hi Daniel,
I think I should make it more clear.
Please take a look at the following code snippet, which jits BPF_JMP instructions
to arm64 instructions.
The code can be divided into two parts: the part where instruction offset jmp_offset
is used and the part where jmp_offset is not used.
1. Lines 963-966 and lines 990-1028 use jmp_offset. We can see that no matter what
value of jmp_offset is, the jited result is emitted either at line 965 or at
line 1027, which is exactly one arm64 instruction, that is, the jited size is
always 4 bytes.
2. The other lines don't use jmp_offset. We can see that the input arguments,
including arguments passed to emit_a64_mov_i and emit_call, do not change in
pass 3 and pass 4, so the jited result also do not change.
961 /* JUMP off */
962 case BPF_JMP | BPF_JA:
963 jmp_offset = bpf2a64_offset(i, off, ctx);
964 check_imm26(jmp_offset);
965 emit(A64_B(jmp_offset), ctx);
966 break;
967 /* IF (dst COND src) JUMP off */
968 case BPF_JMP | BPF_JEQ | BPF_X:
969 case BPF_JMP | BPF_JGT | BPF_X:
970 case BPF_JMP | BPF_JLT | BPF_X:
971 case BPF_JMP | BPF_JGE | BPF_X:
972 case BPF_JMP | BPF_JLE | BPF_X:
973 case BPF_JMP | BPF_JNE | BPF_X:
974 case BPF_JMP | BPF_JSGT | BPF_X:
975 case BPF_JMP | BPF_JSLT | BPF_X:
976 case BPF_JMP | BPF_JSGE | BPF_X:
977 case BPF_JMP | BPF_JSLE | BPF_X:
978 case BPF_JMP32 | BPF_JEQ | BPF_X:
979 case BPF_JMP32 | BPF_JGT | BPF_X:
980 case BPF_JMP32 | BPF_JLT | BPF_X:
981 case BPF_JMP32 | BPF_JGE | BPF_X:
982 case BPF_JMP32 | BPF_JLE | BPF_X:
983 case BPF_JMP32 | BPF_JNE | BPF_X:
984 case BPF_JMP32 | BPF_JSGT | BPF_X:
985 case BPF_JMP32 | BPF_JSLT | BPF_X:
986 case BPF_JMP32 | BPF_JSGE | BPF_X:
987 case BPF_JMP32 | BPF_JSLE | BPF_X:
988 emit(A64_CMP(is64, dst, src), ctx);
989 emit_cond_jmp:
990 jmp_offset = bpf2a64_offset(i, off, ctx);
991 check_imm19(jmp_offset);
992 switch (BPF_OP(code)) {
993 case BPF_JEQ:
994 jmp_cond = A64_COND_EQ;
995 break;
996 case BPF_JGT:
997 jmp_cond = A64_COND_HI;
998 break;
999 case BPF_JLT:
1000 jmp_cond = A64_COND_CC;
1001 break;
1002 case BPF_JGE:
1003 jmp_cond = A64_COND_CS;
1004 break;
1005 case BPF_JLE:
1006 jmp_cond = A64_COND_LS;
1007 break;
1008 case BPF_JSET:
1009 case BPF_JNE:
1010 jmp_cond = A64_COND_NE;
1011 break;
1012 case BPF_JSGT:
1013 jmp_cond = A64_COND_GT;
1014 break;
1015 case BPF_JSLT:
1016 jmp_cond = A64_COND_LT;
1017 break;
1018 case BPF_JSGE:
1019 jmp_cond = A64_COND_GE;
1020 break;
1021 case BPF_JSLE:
1022 jmp_cond = A64_COND_LE;
1023 break;
1024 default:
1025 return -EFAULT;
1026 }
1027 emit(A64_B_(jmp_cond, jmp_offset), ctx);
1028 break;
1029 case BPF_JMP | BPF_JSET | BPF_X:
1030 case BPF_JMP32 | BPF_JSET | BPF_X:
1031 emit(A64_TST(is64, dst, src), ctx);
1032 goto emit_cond_jmp;
1033 /* IF (dst COND imm) JUMP off */
1034 case BPF_JMP | BPF_JEQ | BPF_K:
1035 case BPF_JMP | BPF_JGT | BPF_K:
1036 case BPF_JMP | BPF_JLT | BPF_K:
1037 case BPF_JMP | BPF_JGE | BPF_K:
1038 case BPF_JMP | BPF_JLE | BPF_K:
1039 case BPF_JMP | BPF_JNE | BPF_K:
1040 case BPF_JMP | BPF_JSGT | BPF_K:
1041 case BPF_JMP | BPF_JSLT | BPF_K:
1042 case BPF_JMP | BPF_JSGE | BPF_K:
1043 case BPF_JMP | BPF_JSLE | BPF_K:
1044 case BPF_JMP32 | BPF_JEQ | BPF_K:
1045 case BPF_JMP32 | BPF_JGT | BPF_K:
1046 case BPF_JMP32 | BPF_JLT | BPF_K:
1047 case BPF_JMP32 | BPF_JGE | BPF_K:
1048 case BPF_JMP32 | BPF_JLE | BPF_K:
1049 case BPF_JMP32 | BPF_JNE | BPF_K:
1050 case BPF_JMP32 | BPF_JSGT | BPF_K:
1051 case BPF_JMP32 | BPF_JSLT | BPF_K:
1052 case BPF_JMP32 | BPF_JSGE | BPF_K:
1053 case BPF_JMP32 | BPF_JSLE | BPF_K:
1054 if (is_addsub_imm(imm)) {
1055 emit(A64_CMP_I(is64, dst, imm), ctx);
1056 } else if (is_addsub_imm(-imm)) {
1057 emit(A64_CMN_I(is64, dst, -imm), ctx);
1058 } else {
1059 emit_a64_mov_i(is64, tmp, imm, ctx);
1060 emit(A64_CMP(is64, dst, tmp), ctx);
1061 }
1062 goto emit_cond_jmp;
1063 case BPF_JMP | BPF_JSET | BPF_K:
1064 case BPF_JMP32 | BPF_JSET | BPF_K:
1065 a64_insn = A64_TST_I(is64, dst, imm);
1066 if (a64_insn != AARCH64_BREAK_FAULT) {
1067 emit(a64_insn, ctx);
1068 } else {
1069 emit_a64_mov_i(is64, tmp, imm, ctx);
1070 emit(A64_TST(is64, dst, tmp), ctx);
1071 }
1072 goto emit_cond_jmp;
1073 /* function call */
1074 case BPF_JMP | BPF_CALL:
1075 {
1076 const u8 r0 = bpf2a64[BPF_REG_0];
1077 bool func_addr_fixed;
1078 u64 func_addr;
1079
1080 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1081 &func_addr, &func_addr_fixed);
1082 if (ret < 0)
1083 return ret;
1084 emit_call(func_addr, ctx);
1085 emit(A64_MOV(1, r0, A64_R(0)), ctx);
1086 break;
1087 }
1088 /* tail call */
1089 case BPF_JMP | BPF_TAIL_CALL:
1090 if (emit_bpf_tail_call(ctx))
1091 return -EFAULT;
1092 break;
1093 /* function return */
1094 case BPF_JMP | BPF_EXIT:
1095 /* Optimization: when last instruction is EXIT,
1096 simply fallthrough to epilogue. */
1097 if (i == ctx->prog->len - 1)
1098 break;
1099 jmp_offset = epilogue_offset(ctx);
1100 check_imm26(jmp_offset);
1101 emit(A64_B(jmp_offset), ctx);
1102 break;
In fact, what happens in step 3 and step 4 is almost the same as what happened in
pass 1 and pass 2 before this series, where there is no convergence either.
Tested with test_bpf.ko and some arm64 working selftests, nothing failed.
[...]
.