Re: [RESEND PATCH bpf-next 1/2] bpf, arm64: Jit BPF_CALL to direct call when possible

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 9/27/2022 10:01 PM, Xu Kuohai wrote:
On 9/27/2022 4:29 AM, Daniel Borkmann wrote:
[ +Mark/Florent ]

On 9/19/22 11:21 AM, Xu Kuohai wrote:
From: Xu Kuohai <xukuohai@xxxxxxxxxx>

Currently BPF_CALL is always jited to indirect call, but when target is
in the range of direct call, BPF_CALL can be jited to direct call.

For example, the following BPF_CALL

     call __htab_map_lookup_elem

is always jited to an indirect call:

     mov     x10, #0xffffffffffff18f4
     movk    x10, #0x821, lsl #16
     movk    x10, #0x8000, lsl #32
     blr     x10

When the target is in the range of direct call, it can be jited to:

     bl      0xfffffffffd33bc98

This patch does such jit when possible.

1. First pass, get the maximum jited image size. Since the jited image
    memory is not allocated yet, the distance between jited BPF_CALL
    instructon and call target is unknown, so jit all BPF_CALL to indirect
    call to get the maximum image size.

2. Allocate image memory with the size caculated in step 1.

3. Second pass, determine the jited address and size for every bpf instruction.
    Since image memory is now allocated and there is only one jit method for
    bpf instructions other than BPF_CALL, so the jited address for the first
    BPF_CALL is determined, so the distance to call target is determined, so
    the first BPF_CALL is determined to be jited to direct or indirect call,
    so the jited image size after the first BPF_CALL is determined. By analogy,
    the jited addresses and sizes for all subsequent BPF instructions are
    determined.

4. Last pass, generate the final image. The jump offset of jump instruction
    whose target is within the jited image is determined in this pass, since
    the target instruction address may be changed in step 3.

Wouldn't this require similar convergence process like in x86-64 JIT? You state
the jump instructions are placed in step 4 because step 3 could have changed their
offsets, but then after step 4, couldn't also again the offsets have changed for
the target addresses from 3 again in some corner cases (given emit_a64_mov_i() is
used also in jump encoding)?


IIUC, the reason why there is a convergence process on x86 is that x86's jmp
instruction length varies with the size of immediate part, so after immediate
part is adjusted, the instruction length may change accordingly, and consequently
cause the positions of subsequent instructions to change, which in turn causes
the distance between instructions to change. However, arm64's instruction size
is fixed to 4 bytes and does not change with immediate part changes. So adjusting
the immediate part of arm64 jump instruction does not result in a change in
instruction length or position.

For BPF_CALL, arguments passed to emit_call() and emit_a64_mov_i() (if called)
do not change in pass 3 and 4, so the jited result does not change. This is also
true for other non-BPF_JMP instructions.

So no convergence is required on arm64.


Hi Daniel,

I think I should make it more clear.

Please take a look at the following code snippet, which jits BPF_JMP instructions
to arm64 instructions.

The code can be divided into two parts: the part where instruction offset jmp_offset
is used and the part where jmp_offset is not used.

1. Lines 963-966 and lines 990-1028 use jmp_offset. We can see that no matter what
   value of jmp_offset is, the jited result is emitted either at line 965 or at
   line 1027, which is exactly one arm64 instruction, that is, the jited size is
   always 4 bytes.

2. The other lines don't use jmp_offset. We can see that the input arguments,
   including arguments passed to emit_a64_mov_i and emit_call, do not change in
   pass 3 and pass 4, so the jited result also do not change.

 961         /* JUMP off */
 962         case BPF_JMP | BPF_JA:
 963                 jmp_offset = bpf2a64_offset(i, off, ctx);
 964                 check_imm26(jmp_offset);
 965                 emit(A64_B(jmp_offset), ctx);
 966                 break;
 967         /* IF (dst COND src) JUMP off */
 968         case BPF_JMP | BPF_JEQ | BPF_X:
 969         case BPF_JMP | BPF_JGT | BPF_X:
 970         case BPF_JMP | BPF_JLT | BPF_X:
 971         case BPF_JMP | BPF_JGE | BPF_X:
 972         case BPF_JMP | BPF_JLE | BPF_X:
 973         case BPF_JMP | BPF_JNE | BPF_X:
 974         case BPF_JMP | BPF_JSGT | BPF_X:
 975         case BPF_JMP | BPF_JSLT | BPF_X:
 976         case BPF_JMP | BPF_JSGE | BPF_X:
 977         case BPF_JMP | BPF_JSLE | BPF_X:
 978         case BPF_JMP32 | BPF_JEQ | BPF_X:
 979         case BPF_JMP32 | BPF_JGT | BPF_X:
 980         case BPF_JMP32 | BPF_JLT | BPF_X:
 981         case BPF_JMP32 | BPF_JGE | BPF_X:
 982         case BPF_JMP32 | BPF_JLE | BPF_X:
 983         case BPF_JMP32 | BPF_JNE | BPF_X:
 984         case BPF_JMP32 | BPF_JSGT | BPF_X:
 985         case BPF_JMP32 | BPF_JSLT | BPF_X:
 986         case BPF_JMP32 | BPF_JSGE | BPF_X:
 987         case BPF_JMP32 | BPF_JSLE | BPF_X:
 988                 emit(A64_CMP(is64, dst, src), ctx);
 989 emit_cond_jmp:
 990                 jmp_offset = bpf2a64_offset(i, off, ctx);
 991                 check_imm19(jmp_offset);
 992                 switch (BPF_OP(code)) {
 993                 case BPF_JEQ:
 994                         jmp_cond = A64_COND_EQ;
 995                         break;
 996                 case BPF_JGT:
 997                         jmp_cond = A64_COND_HI;
 998                         break;
 999                 case BPF_JLT:
1000                         jmp_cond = A64_COND_CC;
1001                         break;
1002                 case BPF_JGE:
1003                         jmp_cond = A64_COND_CS;
1004                         break;
1005                 case BPF_JLE:
1006                         jmp_cond = A64_COND_LS;
1007                         break;
1008                 case BPF_JSET:
1009                 case BPF_JNE:
1010                         jmp_cond = A64_COND_NE;
1011                         break;
1012                 case BPF_JSGT:
1013                         jmp_cond = A64_COND_GT;
1014                         break;
1015                 case BPF_JSLT:
1016                         jmp_cond = A64_COND_LT;
1017                         break;
1018                 case BPF_JSGE:
1019                         jmp_cond = A64_COND_GE;
1020                         break;
1021                 case BPF_JSLE:
1022                         jmp_cond = A64_COND_LE;
1023                         break;
1024                 default:
1025                         return -EFAULT;
1026                 }
1027                 emit(A64_B_(jmp_cond, jmp_offset), ctx);
1028                 break;
1029         case BPF_JMP | BPF_JSET | BPF_X:
1030         case BPF_JMP32 | BPF_JSET | BPF_X:
1031                 emit(A64_TST(is64, dst, src), ctx);
1032                 goto emit_cond_jmp;
1033         /* IF (dst COND imm) JUMP off */
1034         case BPF_JMP | BPF_JEQ | BPF_K:
1035         case BPF_JMP | BPF_JGT | BPF_K:
1036         case BPF_JMP | BPF_JLT | BPF_K:
1037         case BPF_JMP | BPF_JGE | BPF_K:
1038         case BPF_JMP | BPF_JLE | BPF_K:
1039         case BPF_JMP | BPF_JNE | BPF_K:
1040         case BPF_JMP | BPF_JSGT | BPF_K:
1041         case BPF_JMP | BPF_JSLT | BPF_K:
1042         case BPF_JMP | BPF_JSGE | BPF_K:
1043         case BPF_JMP | BPF_JSLE | BPF_K:
1044         case BPF_JMP32 | BPF_JEQ | BPF_K:
1045         case BPF_JMP32 | BPF_JGT | BPF_K:
1046         case BPF_JMP32 | BPF_JLT | BPF_K:
1047         case BPF_JMP32 | BPF_JGE | BPF_K:
1048         case BPF_JMP32 | BPF_JLE | BPF_K:
1049         case BPF_JMP32 | BPF_JNE | BPF_K:
1050         case BPF_JMP32 | BPF_JSGT | BPF_K:
1051         case BPF_JMP32 | BPF_JSLT | BPF_K:
1052         case BPF_JMP32 | BPF_JSGE | BPF_K:
1053         case BPF_JMP32 | BPF_JSLE | BPF_K:
1054                 if (is_addsub_imm(imm)) {
1055                         emit(A64_CMP_I(is64, dst, imm), ctx);
1056                 } else if (is_addsub_imm(-imm)) {
1057                         emit(A64_CMN_I(is64, dst, -imm), ctx);
1058                 } else {
1059                         emit_a64_mov_i(is64, tmp, imm, ctx);
1060                         emit(A64_CMP(is64, dst, tmp), ctx);
1061                 }
1062                 goto emit_cond_jmp;
1063         case BPF_JMP | BPF_JSET | BPF_K:
1064         case BPF_JMP32 | BPF_JSET | BPF_K:
1065                 a64_insn = A64_TST_I(is64, dst, imm);
1066                 if (a64_insn != AARCH64_BREAK_FAULT) {
1067                         emit(a64_insn, ctx);
1068                 } else {
1069                         emit_a64_mov_i(is64, tmp, imm, ctx);
1070                         emit(A64_TST(is64, dst, tmp), ctx);
1071                 }
1072                 goto emit_cond_jmp;
1073         /* function call */
1074         case BPF_JMP | BPF_CALL:
1075         {
1076                 const u8 r0 = bpf2a64[BPF_REG_0];
1077                 bool func_addr_fixed;
1078                 u64 func_addr;
1079
1080                 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1081                                             &func_addr, &func_addr_fixed);
1082                 if (ret < 0)
1083                         return ret;
1084                 emit_call(func_addr, ctx);
1085                 emit(A64_MOV(1, r0, A64_R(0)), ctx);
1086                 break;
1087         }
1088         /* tail call */
1089         case BPF_JMP | BPF_TAIL_CALL:
1090                 if (emit_bpf_tail_call(ctx))
1091                         return -EFAULT;
1092                 break;
1093         /* function return */
1094         case BPF_JMP | BPF_EXIT:
1095                 /* Optimization: when last instruction is EXIT,
1096                    simply fallthrough to epilogue. */
1097                 if (i == ctx->prog->len - 1)
1098                         break;
1099                 jmp_offset = epilogue_offset(ctx);
1100                 check_imm26(jmp_offset);
1101                 emit(A64_B(jmp_offset), ctx);
1102                 break;

In fact, what happens in step 3 and step 4 is almost the same as what happened in
pass 1 and pass 2 before this series, where there is no convergence either.

Tested with test_bpf.ko and some arm64 working selftests, nothing failed.

[...]

.




[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux