[PATCH 08/15] ebpf-docs: Use consistent names for the same field

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



From: Dave Thaler <dthaler@xxxxxxxxxxxxx>

Signed-off-by: Dave Thaler <dthaler@xxxxxxxxxxxxx>
---
 Documentation/bpf/instruction-set.rst | 107 ++++++++++++++++++--------
 1 file changed, 76 insertions(+), 31 deletions(-)

diff --git a/Documentation/bpf/instruction-set.rst b/Documentation/bpf/instruction-set.rst
index 3c5a63612..2987234eb 100644
--- a/Documentation/bpf/instruction-set.rst
+++ b/Documentation/bpf/instruction-set.rst
@@ -34,20 +34,59 @@ Instruction encoding
 eBPF has two instruction encodings:
 
 * the basic instruction encoding, which uses 64 bits to encode an instruction
-* the wide instruction encoding, which appends a second 64-bit immediate value
-  (imm64) after the basic instruction for a total of 128 bits.
+* the wide instruction encoding, which appends a second 64-bit immediate (i.e.,
+  constant) value after the basic instruction for a total of 128 bits.
 
-The basic instruction encoding looks as follows:
+The basic instruction encoding is as follows, where MSB and LSB mean the most significant
+bits and least significant bits, respectively:
 
 =============  =======  ===============  ====================  ============
 32 bits (MSB)  16 bits  4 bits           4 bits                8 bits (LSB)
 =============  =======  ===============  ====================  ============
-immediate      offset   source register  destination register  opcode
+imm            offset   src              dst                   opcode
 =============  =======  ===============  ====================  ============
 
+imm
+  signed integer immediate value
+
+offset
+  signed integer offset used with pointer arithmetic
+
+src
+  the source register number (0-10), except where otherwise specified
+  (`64-bit immediate instructions`_ reuse this field for other purposes)
+
+dst
+  destination register number (0-10)
+
+opcode
+  operation to perform
+
 Note that most instructions do not use all of the fields.
 Unused fields shall be cleared to zero.
 
+As discussed below in `64-bit immediate instructions`_, some
+instructions use a 64-bit immediate value that is constructed as follows.
+The 64 bits following the basic instruction contain a pseudo instruction
+using the same format but with opcode, dst, src, and offset all set to zero,
+and imm containing the high 32 bits of the immediate value.
+
+=================  ==================
+64 bits (MSB)      64 bits (LSB)
+=================  ==================
+basic instruction  pseudo instruction
+=================  ==================
+
+Thus the 64-bit immediate value is constructed as follows:
+
+  imm64 = imm + (next_imm << 32)
+
+where 'next_imm' refers to the imm value of the pseudo instruction
+following the basic instruction.
+
+In the remainder of this document 'src' and 'dst' refer to the values of the source
+and destination registers, respectively, rather than the register number.
+
 Instruction classes
 -------------------
 
@@ -75,20 +114,24 @@ For arithmetic and jump instructions (``BPF_ALU``, ``BPF_ALU64``, ``BPF_JMP`` an
 ==============  ======  =================
 4 bits (MSB)    1 bit   3 bits (LSB)
 ==============  ======  =================
-operation code  source  instruction class
+code            source  instruction class
 ==============  ======  =================
 
-The 4th bit encodes the source operand:
+code
+  the operation code, whose meaning varies by instruction class
 
-  ======  =====  ========================================
-  source  value  description
-  ======  =====  ========================================
-  BPF_K   0x00   use 32-bit immediate as source operand
-  BPF_X   0x08   use 'src_reg' register as source operand
-  ======  =====  ========================================
+source
+  the source operand location, which unless otherwise specified is one of:
 
-The four MSB bits store the operation code.
+  ======  =====  ==========================================
+  source  value  description
+  ======  =====  ==========================================
+  BPF_K   0x00   use 32-bit 'imm' value as source operand
+  BPF_X   0x08   use 'src' register value as source operand
+  ======  =====  ==========================================
 
+instruction class
+  the instruction class (see `Instruction classes`_)
 
 Arithmetic instructions
 -----------------------
@@ -116,6 +159,8 @@ BPF_ARSH  0xc0   sign extending shift right
 BPF_END   0xd0   byte swap operations (see `Byte swap instructions`_ below)
 ========  =====  ==========================================================
 
+where 'src' is the source operand value.
+
 Underflow and overflow are allowed during arithmetic operations,
 meaning the 64-bit or 32-bit value will wrap.  If
 eBPF program execution would result in division by zero,
@@ -125,21 +170,21 @@ the destination register is instead left unchanged.
 
 ``BPF_ADD | BPF_X | BPF_ALU`` means::
 
-  dst_reg = (uint32_t) dst_reg + (uint32_t) src_reg;
+  dst = (uint32_t) (dst + src)
 
 where '(uint32_t)' indicates truncation to 32 bits.
 
 ``BPF_ADD | BPF_X | BPF_ALU64`` means::
 
-  dst_reg = dst_reg + src_reg
+  dst = dst + src
 
 ``BPF_XOR | BPF_K | BPF_ALU`` means::
 
-  src_reg = (uint32_t) src_reg ^ (uint32_t) imm32
+  src = (uint32_t) src ^ (uint32_t) imm
 
 ``BPF_XOR | BPF_K | BPF_ALU64`` means::
 
-  src_reg = src_reg ^ imm32
+  src = src ^ imm
 
 
 Also note that the modulo operation often varies by language
@@ -176,11 +221,11 @@ Examples:
 
 ``BPF_ALU | BPF_TO_LE | BPF_END`` with imm = 16 means::
 
-  dst_reg = htole16(dst_reg)
+  dst = htole16(dst)
 
 ``BPF_ALU | BPF_TO_BE | BPF_END`` with imm = 64 means::
 
-  dst_reg = htobe64(dst_reg)
+  dst = htobe64(dst)
 
 Jump instructions
 -----------------
@@ -255,15 +300,15 @@ instructions that transfer data between a register and memory.
 
 ``BPF_MEM | <size> | BPF_STX`` means::
 
-  *(size *) (dst_reg + off) = src_reg
+  *(size *) (dst + offset) = src_reg
 
 ``BPF_MEM | <size> | BPF_ST`` means::
 
-  *(size *) (dst_reg + off) = imm32
+  *(size *) (dst + offset) = imm32
 
 ``BPF_MEM | <size> | BPF_LDX`` means::
 
-  dst_reg = *(size *) (src_reg + off)
+  dst = *(size *) (src + offset)
 
 Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW``.
 
@@ -297,11 +342,11 @@ BPF_XOR   0xa0   atomic xor
 
 ``BPF_ATOMIC | BPF_W  | BPF_STX`` with 'imm' = BPF_ADD means::
 
-  *(uint32_t *)(dst_reg + off16) += src_reg
+  *(uint32_t *)(dst + offset) += src
 
 ``BPF_ATOMIC | BPF_DW | BPF_STX`` with 'imm' = BPF ADD means::
 
-  *(uint32_t *)(dst_reg + off16) += src_reg
+  *(uint64_t *)(dst + offset) += src
 
 In addition to the simple atomic operations, there also is a modifier and
 two complex atomic operations:
@@ -316,16 +361,16 @@ BPF_CMPXCHG  0xf0 | BPF_FETCH  atomic compare and exchange
 
 The ``BPF_FETCH`` modifier is optional for simple atomic operations, and
 always set for the complex atomic operations.  If the ``BPF_FETCH`` flag
-is set, then the operation also overwrites ``src_reg`` with the value that
+is set, then the operation also overwrites ``src`` with the value that
 was in memory before it was modified.
 
-The ``BPF_XCHG`` operation atomically exchanges ``src_reg`` with the value
-addressed by ``dst_reg + off``.
+The ``BPF_XCHG`` operation atomically exchanges ``src`` with the value
+addressed by ``dst + offset``.
 
 The ``BPF_CMPXCHG`` operation atomically compares the value addressed by
-``dst_reg + off`` with ``R0``. If they match, the value addressed by
-``dst_reg + off`` is replaced with ``src_reg``. In either case, the
-value that was at ``dst_reg + off`` before the operation is zero-extended
+``dst + offset`` with ``R0``. If they match, the value addressed by
+``dst + offset`` is replaced with ``src``. In either case, the
+value that was at ``dst + offset`` before the operation is zero-extended
 and loaded back to ``R0``.
 
 64-bit immediate instructions
@@ -338,7 +383,7 @@ There is currently only one such instruction.
 
 ``BPF_LD | BPF_DW | BPF_IMM`` means::
 
-  dst_reg = imm64
+  dst = imm64
 
 
 Legacy BPF Packet access instructions
-- 
2.33.4




[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux