Re: [PATCH v7 bpf-next 08/11] bpf: Implement verifier support for validation of async callbacks.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



I ran into a problem due to this patch.  Specifically, the test in the
__check_func_call() function is flaweed because it can actually mis-interpret
a regular BPF-to-BPF pseudo-call as a callback call.

Consider the conditional in the code:

	if (insn->code == (BPF_JMP | BPF_CALL) &&
	    insn->imm == BPF_FUNC_timer_set_callback) {

The BPF_FUNC_timer_set_callback has value 170.  This means that if you have
a BPF program that contains a pseudo-call with an instruction delta of 170,
this conditional will be found to be true by the verifier, and it will
interpret the pseudo-call as a callback.  This leads to a mess with the
verification of the program because it makes the wrong assumptions about the
nature of this call.

As far as I can see, the solution is simple.  Include an explicit check to
ensure that src_reg is not a pseudo-call.  I.e. make the conditional:

	if (insn->code == (BPF_JMP | BPF_CALL) &&
	    insn->src_reg != BPF_PSEUDO_CALL &&
	    insn->imm == BPF_FUNC_timer_set_callback) {

It is of course a pretty rare case that this would go wrong, but since my
code makes extensive use of BPF-to-BPF pseudo-calls, it was only a matter of
time before I would run into a call with instruction delta 170.

	Kris

On Wed, Jul 14, 2021 at 05:54:14PM -0700, Alexei Starovoitov wrote:
> From: Alexei Starovoitov <ast@xxxxxxxxxx>
> 
> bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on
> PTR_TO_FUNC infra in the verifier to validate addresses to subprograms
> and pass them into the helpers as function callbacks.
> In case of bpf_for_each_map_elem() the callback is invoked synchronously
> and the verifier treats it as a normal subprogram call by adding another
> bpf_func_state and new frame in __check_func_call().
> bpf_timer_set_callback() doesn't invoke the callback directly.
> The subprogram will be called asynchronously from bpf_timer_cb().
> Teach the verifier to validate such async callbacks as special kind
> of jump by pushing verifier state into stack and let pop_stack() process it.
> 
> Special care needs to be taken during state pruning.
> The call insn doing bpf_timer_set_callback has to be a prune_point.
> Otherwise short timer callbacks might not have prune points in front of
> bpf_timer_set_callback() which means is_state_visited() will be called
> after this call insn is processed in __check_func_call(). Which means that
> another async_cb state will be pushed to be walked later and the verifier
> will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit.
> Since push_async_cb() looks like another push_stack() branch the
> infinite loop detection will trigger false positive. To recognize
> this case mark such states as in_async_callback_fn.
> To distinguish infinite loop in async callback vs the same callback called
> with different arguments for different map and timer add async_entry_cnt
> to bpf_func_state.
> 
> Enforce return zero from async callbacks.
> 
> Signed-off-by: Alexei Starovoitov <ast@xxxxxxxxxx>
> Acked-by: Andrii Nakryiko <andrii@xxxxxxxxxx>
> ---
>  include/linux/bpf_verifier.h |   9 ++-
>  kernel/bpf/helpers.c         |   8 +--
>  kernel/bpf/verifier.c        | 123 ++++++++++++++++++++++++++++++++++-
>  3 files changed, 131 insertions(+), 9 deletions(-)
> 
> diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h
> index 5d3169b57e6e..242d0b1a0772 100644
> --- a/include/linux/bpf_verifier.h
> +++ b/include/linux/bpf_verifier.h
> @@ -208,12 +208,19 @@ struct bpf_func_state {
>  	 * zero == main subprog
>  	 */
>  	u32 subprogno;
> +	/* Every bpf_timer_start will increment async_entry_cnt.
> +	 * It's used to distinguish:
> +	 * void foo(void) { for(;;); }
> +	 * void foo(void) { bpf_timer_set_callback(,foo); }
> +	 */
> +	u32 async_entry_cnt;
> +	bool in_callback_fn;
> +	bool in_async_callback_fn;
>  
>  	/* The following fields should be last. See copy_func_state() */
>  	int acquired_refs;
>  	struct bpf_reference_state *refs;
>  	int allocated_stack;
> -	bool in_callback_fn;
>  	struct bpf_stack_state *stack;
>  };
>  
> diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
> index 74b16593983d..9fe846ec6bd1 100644
> --- a/kernel/bpf/helpers.c
> +++ b/kernel/bpf/helpers.c
> @@ -1043,7 +1043,6 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
>  	void *callback_fn;
>  	void *key;
>  	u32 idx;
> -	int ret;
>  
>  	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
>  	if (!callback_fn)
> @@ -1066,10 +1065,9 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
>  		key = value - round_up(map->key_size, 8);
>  	}
>  
> -	ret = BPF_CAST_CALL(callback_fn)((u64)(long)map,
> -					 (u64)(long)key,
> -					 (u64)(long)value, 0, 0);
> -	WARN_ON(ret != 0); /* Next patch moves this check into the verifier */
> +	BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key,
> +				   (u64)(long)value, 0, 0);
> +	/* The verifier checked that return value is zero. */
>  
>  	this_cpu_write(hrtimer_running, NULL);
>  out:
> diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
> index 1511f92b4cf4..ab6ce598a652 100644
> --- a/kernel/bpf/verifier.c
> +++ b/kernel/bpf/verifier.c
> @@ -735,6 +735,10 @@ static void print_verifier_state(struct bpf_verifier_env *env,
>  			if (state->refs[i].id)
>  				verbose(env, ",%d", state->refs[i].id);
>  	}
> +	if (state->in_callback_fn)
> +		verbose(env, " cb");
> +	if (state->in_async_callback_fn)
> +		verbose(env, " async_cb");
>  	verbose(env, "\n");
>  }
>  
> @@ -1527,6 +1531,54 @@ static void init_func_state(struct bpf_verifier_env *env,
>  	init_reg_state(env, state);
>  }
>  
> +/* Similar to push_stack(), but for async callbacks */
> +static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
> +						int insn_idx, int prev_insn_idx,
> +						int subprog)
> +{
> +	struct bpf_verifier_stack_elem *elem;
> +	struct bpf_func_state *frame;
> +
> +	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
> +	if (!elem)
> +		goto err;
> +
> +	elem->insn_idx = insn_idx;
> +	elem->prev_insn_idx = prev_insn_idx;
> +	elem->next = env->head;
> +	elem->log_pos = env->log.len_used;
> +	env->head = elem;
> +	env->stack_size++;
> +	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
> +		verbose(env,
> +			"The sequence of %d jumps is too complex for async cb.\n",
> +			env->stack_size);
> +		goto err;
> +	}
> +	/* Unlike push_stack() do not copy_verifier_state().
> +	 * The caller state doesn't matter.
> +	 * This is async callback. It starts in a fresh stack.
> +	 * Initialize it similar to do_check_common().
> +	 */
> +	elem->st.branches = 1;
> +	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
> +	if (!frame)
> +		goto err;
> +	init_func_state(env, frame,
> +			BPF_MAIN_FUNC /* callsite */,
> +			0 /* frameno within this callchain */,
> +			subprog /* subprog number within this prog */);
> +	elem->st.frame[0] = frame;
> +	return &elem->st;
> +err:
> +	free_verifier_state(env->cur_state, true);
> +	env->cur_state = NULL;
> +	/* pop all elements and return */
> +	while (!pop_stack(env, NULL, NULL, false));
> +	return NULL;
> +}
> +
> +
>  enum reg_arg_type {
>  	SRC_OP,		/* register is used as source operand */
>  	DST_OP,		/* register is used as destination operand */
> @@ -5704,6 +5756,30 @@ static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn
>  		}
>  	}
>  
> +	if (insn->code == (BPF_JMP | BPF_CALL) &&
> +	    insn->imm == BPF_FUNC_timer_set_callback) {
> +		struct bpf_verifier_state *async_cb;
> +
> +		/* there is no real recursion here. timer callbacks are async */
> +		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
> +					 *insn_idx, subprog);
> +		if (!async_cb)
> +			return -EFAULT;
> +		callee = async_cb->frame[0];
> +		callee->async_entry_cnt = caller->async_entry_cnt + 1;
> +
> +		/* Convert bpf_timer_set_callback() args into timer callback args */
> +		err = set_callee_state_cb(env, caller, callee, *insn_idx);
> +		if (err)
> +			return err;
> +
> +		clear_caller_saved_regs(env, caller->regs);
> +		mark_reg_unknown(env, caller->regs, BPF_REG_0);
> +		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
> +		/* continue with next insn after call */
> +		return 0;
> +	}
> +
>  	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
>  	if (!callee)
>  		return -ENOMEM;
> @@ -5856,6 +5932,7 @@ static int set_timer_callback_state(struct bpf_verifier_env *env,
>  	/* unused */
>  	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
>  	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
> +	callee->in_async_callback_fn = true;
>  	return 0;
>  }
>  
> @@ -9224,7 +9301,8 @@ static int check_return_code(struct bpf_verifier_env *env)
>  	struct tnum range = tnum_range(0, 1);
>  	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
>  	int err;
> -	const bool is_subprog = env->cur_state->frame[0]->subprogno;
> +	struct bpf_func_state *frame = env->cur_state->frame[0];
> +	const bool is_subprog = frame->subprogno;
>  
>  	/* LSM and struct_ops func-ptr's return type could be "void" */
>  	if (!is_subprog &&
> @@ -9249,6 +9327,22 @@ static int check_return_code(struct bpf_verifier_env *env)
>  	}
>  
>  	reg = cur_regs(env) + BPF_REG_0;
> +
> +	if (frame->in_async_callback_fn) {
> +		/* enforce return zero from async callbacks like timer */
> +		if (reg->type != SCALAR_VALUE) {
> +			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
> +				reg_type_str[reg->type]);
> +			return -EINVAL;
> +		}
> +
> +		if (!tnum_in(tnum_const(0), reg->var_off)) {
> +			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
> +			return -EINVAL;
> +		}
> +		return 0;
> +	}
> +
>  	if (is_subprog) {
>  		if (reg->type != SCALAR_VALUE) {
>  			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
> @@ -9496,6 +9590,13 @@ static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
>  		return DONE_EXPLORING;
>  
>  	case BPF_CALL:
> +		if (insns[t].imm == BPF_FUNC_timer_set_callback)
> +			/* Mark this call insn to trigger is_state_visited() check
> +			 * before call itself is processed by __check_func_call().
> +			 * Otherwise new async state will be pushed for further
> +			 * exploration.
> +			 */
> +			init_explored_state(env, t);
>  		return visit_func_call_insn(t, insn_cnt, insns, env,
>  					    insns[t].src_reg == BPF_PSEUDO_CALL);
>  
> @@ -10503,9 +10604,25 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
>  		states_cnt++;
>  		if (sl->state.insn_idx != insn_idx)
>  			goto next;
> +
>  		if (sl->state.branches) {
> -			if (states_maybe_looping(&sl->state, cur) &&
> -			    states_equal(env, &sl->state, cur)) {
> +			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
> +
> +			if (frame->in_async_callback_fn &&
> +			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
> +				/* Different async_entry_cnt means that the verifier is
> +				 * processing another entry into async callback.
> +				 * Seeing the same state is not an indication of infinite
> +				 * loop or infinite recursion.
> +				 * But finding the same state doesn't mean that it's safe
> +				 * to stop processing the current state. The previous state
> +				 * hasn't yet reached bpf_exit, since state.branches > 0.
> +				 * Checking in_async_callback_fn alone is not enough either.
> +				 * Since the verifier still needs to catch infinite loops
> +				 * inside async callbacks.
> +				 */
> +			} else if (states_maybe_looping(&sl->state, cur) &&
> +				   states_equal(env, &sl->state, cur)) {
>  				verbose_linfo(env, insn_idx, "; ");
>  				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
>  				return -EINVAL;
> -- 
> 2.30.2



[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux