Use RST tables that are nicely readable both in plain ascii as well as in html to render the instruction encodings, and add a few subheadings to better structure the text. Signed-off-by: Christoph Hellwig <hch@xxxxxx> --- Documentation/bpf/instruction-set.rst | 158 ++++++++++++++++---------- 1 file changed, 95 insertions(+), 63 deletions(-) diff --git a/Documentation/bpf/instruction-set.rst b/Documentation/bpf/instruction-set.rst index 3967842e00234..4e3041cf04325 100644 --- a/Documentation/bpf/instruction-set.rst +++ b/Documentation/bpf/instruction-set.rst @@ -19,19 +19,10 @@ The eBPF calling convention is defined as: R0 - R5 are scratch registers and eBPF programs needs to spill/fill them if necessary across calls. -eBPF opcode encoding -==================== - -For arithmetic and jump instructions the 8-bit 'opcode' field is divided into -three parts:: - - +----------------+--------+--------------------+ - | 4 bits | 1 bit | 3 bits | - | operation code | source | instruction class | - +----------------+--------+--------------------+ - (MSB) (LSB) +Instruction classes +=================== -Three LSB bits store instruction class which is one of: +The three LSB bits of the 'opcode' field store the instruction class: ========= ===== class value @@ -46,17 +37,34 @@ Three LSB bits store instruction class which is one of: BPF_ALU64 0x07 ========= ===== -When BPF_CLASS(code) == BPF_ALU or BPF_JMP, 4th bit encodes source operand ... +Arithmetic and jump instructions +================================ + +For arithmetic and jump instructions (BPF_ALU, BPF_ALU64, BPF_JMP and +BPF_JMP32), the 8-bit 'opcode' field is divided into three parts: -:: + ============== ====== ================= + 4 bits (MSB) 1 bit 3 bits (LSB) + ============== ====== ================= + operation code source instruction class + ============== ====== ================= - BPF_K 0x00 /* use 32-bit immediate as source operand */ - BPF_X 0x08 /* use 'src_reg' register as source operand */ +The 4th bit encodes the source operand: -... and four MSB bits store operation code. + ====== ===== ======================================== + source value description + ====== ===== ======================================== + BPF_K 0x00 use 32-bit immediate as source operand + BPF_X 0x08 use 'src_reg' register as source operand + ====== ===== ======================================== -If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 BPF_OP(code) is one of:: +The four MSB bits store the operation code. +For class BPF_ALU or BPF_ALU64: + + ======== ===== ========================= + code value description + ======== ===== ========================= BPF_ADD 0x00 BPF_SUB 0x10 BPF_MUL 0x20 @@ -68,26 +76,31 @@ If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 BPF_OP(code) is one of:: BPF_NEG 0x80 BPF_MOD 0x90 BPF_XOR 0xa0 - BPF_MOV 0xb0 /* mov reg to reg */ - BPF_ARSH 0xc0 /* sign extending shift right */ - BPF_END 0xd0 /* endianness conversion */ + BPF_MOV 0xb0 mov reg to reg + BPF_ARSH 0xc0 sign extending shift right + BPF_END 0xd0 endianness conversion + ======== ===== ========================= -If BPF_CLASS(code) == BPF_JMP or BPF_JMP32 BPF_OP(code) is one of:: +For class BPF_JMP or BPF_JMP32: - BPF_JA 0x00 /* BPF_JMP only */ + ======== ===== ========================= + code value description + ======== ===== ========================= + BPF_JA 0x00 BPF_JMP only BPF_JEQ 0x10 BPF_JGT 0x20 BPF_JGE 0x30 BPF_JSET 0x40 - BPF_JNE 0x50 /* jump != */ - BPF_JSGT 0x60 /* signed '>' */ - BPF_JSGE 0x70 /* signed '>=' */ - BPF_CALL 0x80 /* function call */ - BPF_EXIT 0x90 /* function return */ - BPF_JLT 0xa0 /* unsigned '<' */ - BPF_JLE 0xb0 /* unsigned '<=' */ - BPF_JSLT 0xc0 /* signed '<' */ - BPF_JSLE 0xd0 /* signed '<=' */ + BPF_JNE 0x50 jump '!=' + BPF_JSGT 0x60 signed '>' + BPF_JSGE 0x70 signed '>=' + BPF_CALL 0x80 function call + BPF_EXIT 0x90 function return + BPF_JLT 0xa0 unsigned '<' + BPF_JLE 0xb0 unsigned '<=' + BPF_JSLT 0xc0 signed '<' + BPF_JSLE 0xd0 signed '<=' + ======== ===== ========================= So BPF_ADD | BPF_X | BPF_ALU means:: @@ -108,37 +121,58 @@ the return value into register R0 before doing a BPF_EXIT. Class 6 is used as BPF_JMP32 to mean exactly the same operations as BPF_JMP, but with 32-bit wide operands for the comparisons instead. -For load and store instructions the 8-bit 'code' field is divided as:: - +--------+--------+-------------------+ - | 3 bits | 2 bits | 3 bits | - | mode | size | instruction class | - +--------+--------+-------------------+ - (MSB) (LSB) +Load and store instructions +=========================== + +For load and store instructions (BPF_LD, BPF_LDX, BPF_ST and BPF_STX), the +8-bit 'opcode' field is divided as: + + ============ ====== ================= + 3 bits (MSB) 2 bits 3 bits (LSB) + ============ ====== ================= + mode size instruction class + ============ ====== ================= + +The size modifier is one of: -Size modifier is one of ... + ============= ===== ===================== + size modifier value description + ============= ===== ===================== + BPF_W 0x00 word (4 bytes) + BPF_H 0x08 half word (2 bytes) + BPF_B 0x10 byte + BPF_DW 0x18 double word (8 bytes) + ============= ===== ===================== -:: +The mode modifier is one of: - BPF_W 0x00 /* word */ - BPF_H 0x08 /* half word */ - BPF_B 0x10 /* byte */ - BPF_DW 0x18 /* double word */ + ============= ===== ===================== + mode modifier value description + ============= ===== ===================== + BPF_IMM 0x00 used for 64-bit mov + BPF_ABS 0x20 + BPF_IND 0x40 + BPF_MEM 0x60 + BPF_ATOMIC 0xc0 atomic operations + ============= ===== ===================== -... which encodes size of load/store operation:: +BPF_MEM | <size> | BPF_STX means:: - B - 1 byte - H - 2 byte - W - 4 byte - DW - 8 byte + *(size *) (dst_reg + off) = src_reg -Mode modifier is one of:: +BPF_MEM | <size> | BPF_ST means:: - BPF_IMM 0x00 /* used for 64-bit mov */ - BPF_ABS 0x20 - BPF_IND 0x40 - BPF_MEM 0x60 - BPF_ATOMIC 0xc0 /* atomic operations */ + *(size *) (dst_reg + off) = imm32 + +BPF_MEM | <size> | BPF_LDX means:: + + dst_reg = *(size *) (src_reg + off) + +Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. + +Packet access instructions +-------------------------- eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and (BPF_IND | <size> | BPF_LD) which are used to access packet data. @@ -165,15 +199,10 @@ For example:: R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32)) and R1 - R5 were scratched. -eBPF has generic load/store operations:: +Atomic operations +----------------- - BPF_MEM | <size> | BPF_STX: *(size *) (dst_reg + off) = src_reg - BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32 - BPF_MEM | <size> | BPF_LDX: dst_reg = *(size *) (src_reg + off) - -Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. - -It also includes atomic operations, which use the immediate field for extra +eBPF includes atomic operations, which use the immediate field for extra encoding:: .imm = BPF_ADD, .code = BPF_ATOMIC | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg @@ -217,6 +246,9 @@ You may encounter ``BPF_XADD`` - this is a legacy name for ``BPF_ATOMIC``, referring to the exclusive-add operation encoded when the immediate field is zero. +16-byte instructions +-------------------- + eBPF has one 16-byte instruction: ``BPF_LD | BPF_DW | BPF_IMM`` which consists of two consecutive ``struct bpf_insn`` 8-byte blocks and interpreted as single instruction that loads 64-bit immediate value into a dst_reg. -- 2.30.2