From: Matteo Croce <mcroce@xxxxxxxxxxxxx> Just copy relo_core.{c,h} from tools/lib/bpf/ to kernel/bpf/ and adapt the Makefile. Signed-off-by: Matteo Croce <mcroce@xxxxxxxxxxxxx> --- kernel/bpf/Makefile | 1 + kernel/bpf/relo_core.c | 1295 ++++++++++++++++++++++++++++++++++++++++ kernel/bpf/relo_core.h | 100 ++++ 3 files changed, 1396 insertions(+) create mode 100644 kernel/bpf/relo_core.c create mode 100644 kernel/bpf/relo_core.h diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile index 7f33098ca63f..2ed7da9eba4a 100644 --- a/kernel/bpf/Makefile +++ b/kernel/bpf/Makefile @@ -36,3 +36,4 @@ obj-$(CONFIG_BPF_SYSCALL) += bpf_struct_ops.o obj-${CONFIG_BPF_LSM} += bpf_lsm.o endif obj-$(CONFIG_BPF_PRELOAD) += preload/ +obj-$(CONFIG_BPF_SYSCALL) += relo_core.o diff --git a/kernel/bpf/relo_core.c b/kernel/bpf/relo_core.c new file mode 100644 index 000000000000..4016ed492d0c --- /dev/null +++ b/kernel/bpf/relo_core.c @@ -0,0 +1,1295 @@ +// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) +/* Copyright (c) 2019 Facebook */ + +#include <stdio.h> +#include <string.h> +#include <errno.h> +#include <ctype.h> +#include <linux/err.h> + +#include "libbpf.h" +#include "bpf.h" +#include "btf.h" +#include "str_error.h" +#include "libbpf_internal.h" + +#define BPF_CORE_SPEC_MAX_LEN 64 + +/* represents BPF CO-RE field or array element accessor */ +struct bpf_core_accessor { + __u32 type_id; /* struct/union type or array element type */ + __u32 idx; /* field index or array index */ + const char *name; /* field name or NULL for array accessor */ +}; + +struct bpf_core_spec { + const struct btf *btf; + /* high-level spec: named fields and array indices only */ + struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; + /* original unresolved (no skip_mods_or_typedefs) root type ID */ + __u32 root_type_id; + /* CO-RE relocation kind */ + enum bpf_core_relo_kind relo_kind; + /* high-level spec length */ + int len; + /* raw, low-level spec: 1-to-1 with accessor spec string */ + int raw_spec[BPF_CORE_SPEC_MAX_LEN]; + /* raw spec length */ + int raw_len; + /* field bit offset represented by spec */ + __u32 bit_offset; +}; + +static bool is_flex_arr(const struct btf *btf, + const struct bpf_core_accessor *acc, + const struct btf_array *arr) +{ + const struct btf_type *t; + + /* not a flexible array, if not inside a struct or has non-zero size */ + if (!acc->name || arr->nelems > 0) + return false; + + /* has to be the last member of enclosing struct */ + t = btf__type_by_id(btf, acc->type_id); + return acc->idx == btf_vlen(t) - 1; +} + +static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) +{ + switch (kind) { + case BPF_FIELD_BYTE_OFFSET: return "byte_off"; + case BPF_FIELD_BYTE_SIZE: return "byte_sz"; + case BPF_FIELD_EXISTS: return "field_exists"; + case BPF_FIELD_SIGNED: return "signed"; + case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; + case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; + case BPF_TYPE_ID_LOCAL: return "local_type_id"; + case BPF_TYPE_ID_TARGET: return "target_type_id"; + case BPF_TYPE_EXISTS: return "type_exists"; + case BPF_TYPE_SIZE: return "type_size"; + case BPF_ENUMVAL_EXISTS: return "enumval_exists"; + case BPF_ENUMVAL_VALUE: return "enumval_value"; + default: return "unknown"; + } +} + +static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) +{ + switch (kind) { + case BPF_FIELD_BYTE_OFFSET: + case BPF_FIELD_BYTE_SIZE: + case BPF_FIELD_EXISTS: + case BPF_FIELD_SIGNED: + case BPF_FIELD_LSHIFT_U64: + case BPF_FIELD_RSHIFT_U64: + return true; + default: + return false; + } +} + +static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) +{ + switch (kind) { + case BPF_TYPE_ID_LOCAL: + case BPF_TYPE_ID_TARGET: + case BPF_TYPE_EXISTS: + case BPF_TYPE_SIZE: + return true; + default: + return false; + } +} + +static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) +{ + switch (kind) { + case BPF_ENUMVAL_EXISTS: + case BPF_ENUMVAL_VALUE: + return true; + default: + return false; + } +} + +/* + * Turn bpf_core_relo into a low- and high-level spec representation, + * validating correctness along the way, as well as calculating resulting + * field bit offset, specified by accessor string. Low-level spec captures + * every single level of nestedness, including traversing anonymous + * struct/union members. High-level one only captures semantically meaningful + * "turning points": named fields and array indicies. + * E.g., for this case: + * + * struct sample { + * int __unimportant; + * struct { + * int __1; + * int __2; + * int a[7]; + * }; + * }; + * + * struct sample *s = ...; + * + * int x = &s->a[3]; // access string = '0:1:2:3' + * + * Low-level spec has 1:1 mapping with each element of access string (it's + * just a parsed access string representation): [0, 1, 2, 3]. + * + * High-level spec will capture only 3 points: + * - intial zero-index access by pointer (&s->... is the same as &s[0]...); + * - field 'a' access (corresponds to '2' in low-level spec); + * - array element #3 access (corresponds to '3' in low-level spec). + * + * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, + * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their + * spec and raw_spec are kept empty. + * + * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access + * string to specify enumerator's value index that need to be relocated. + */ +static int bpf_core_parse_spec(const struct btf *btf, + __u32 type_id, + const char *spec_str, + enum bpf_core_relo_kind relo_kind, + struct bpf_core_spec *spec) +{ + int access_idx, parsed_len, i; + struct bpf_core_accessor *acc; + const struct btf_type *t; + const char *name; + __u32 id; + __s64 sz; + + if (str_is_empty(spec_str) || *spec_str == ':') + return -EINVAL; + + memset(spec, 0, sizeof(*spec)); + spec->btf = btf; + spec->root_type_id = type_id; + spec->relo_kind = relo_kind; + + /* type-based relocations don't have a field access string */ + if (core_relo_is_type_based(relo_kind)) { + if (strcmp(spec_str, "0")) + return -EINVAL; + return 0; + } + + /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ + while (*spec_str) { + if (*spec_str == ':') + ++spec_str; + if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) + return -EINVAL; + if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) + return -E2BIG; + spec_str += parsed_len; + spec->raw_spec[spec->raw_len++] = access_idx; + } + + if (spec->raw_len == 0) + return -EINVAL; + + t = skip_mods_and_typedefs(btf, type_id, &id); + if (!t) + return -EINVAL; + + access_idx = spec->raw_spec[0]; + acc = &spec->spec[0]; + acc->type_id = id; + acc->idx = access_idx; + spec->len++; + + if (core_relo_is_enumval_based(relo_kind)) { + if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) + return -EINVAL; + + /* record enumerator name in a first accessor */ + acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); + return 0; + } + + if (!core_relo_is_field_based(relo_kind)) + return -EINVAL; + + sz = btf__resolve_size(btf, id); + if (sz < 0) + return sz; + spec->bit_offset = access_idx * sz * 8; + + for (i = 1; i < spec->raw_len; i++) { + t = skip_mods_and_typedefs(btf, id, &id); + if (!t) + return -EINVAL; + + access_idx = spec->raw_spec[i]; + acc = &spec->spec[spec->len]; + + if (btf_is_composite(t)) { + const struct btf_member *m; + __u32 bit_offset; + + if (access_idx >= btf_vlen(t)) + return -EINVAL; + + bit_offset = btf_member_bit_offset(t, access_idx); + spec->bit_offset += bit_offset; + + m = btf_members(t) + access_idx; + if (m->name_off) { + name = btf__name_by_offset(btf, m->name_off); + if (str_is_empty(name)) + return -EINVAL; + + acc->type_id = id; + acc->idx = access_idx; + acc->name = name; + spec->len++; + } + + id = m->type; + } else if (btf_is_array(t)) { + const struct btf_array *a = btf_array(t); + bool flex; + + t = skip_mods_and_typedefs(btf, a->type, &id); + if (!t) + return -EINVAL; + + flex = is_flex_arr(btf, acc - 1, a); + if (!flex && access_idx >= a->nelems) + return -EINVAL; + + spec->spec[spec->len].type_id = id; + spec->spec[spec->len].idx = access_idx; + spec->len++; + + sz = btf__resolve_size(btf, id); + if (sz < 0) + return sz; + spec->bit_offset += access_idx * sz * 8; + } else { + pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", + type_id, spec_str, i, id, btf_kind_str(t)); + return -EINVAL; + } + } + + return 0; +} + +/* Check two types for compatibility for the purpose of field access + * relocation. const/volatile/restrict and typedefs are skipped to ensure we + * are relocating semantically compatible entities: + * - any two STRUCTs/UNIONs are compatible and can be mixed; + * - any two FWDs are compatible, if their names match (modulo flavor suffix); + * - any two PTRs are always compatible; + * - for ENUMs, names should be the same (ignoring flavor suffix) or at + * least one of enums should be anonymous; + * - for ENUMs, check sizes, names are ignored; + * - for INT, size and signedness are ignored; + * - any two FLOATs are always compatible; + * - for ARRAY, dimensionality is ignored, element types are checked for + * compatibility recursively; + * - everything else shouldn't be ever a target of relocation. + * These rules are not set in stone and probably will be adjusted as we get + * more experience with using BPF CO-RE relocations. + */ +static int bpf_core_fields_are_compat(const struct btf *local_btf, + __u32 local_id, + const struct btf *targ_btf, + __u32 targ_id) +{ + const struct btf_type *local_type, *targ_type; + +recur: + local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); + targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); + if (!local_type || !targ_type) + return -EINVAL; + + if (btf_is_composite(local_type) && btf_is_composite(targ_type)) + return 1; + if (btf_kind(local_type) != btf_kind(targ_type)) + return 0; + + switch (btf_kind(local_type)) { + case BTF_KIND_PTR: + case BTF_KIND_FLOAT: + return 1; + case BTF_KIND_FWD: + case BTF_KIND_ENUM: { + const char *local_name, *targ_name; + size_t local_len, targ_len; + + local_name = btf__name_by_offset(local_btf, + local_type->name_off); + targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); + local_len = bpf_core_essential_name_len(local_name); + targ_len = bpf_core_essential_name_len(targ_name); + /* one of them is anonymous or both w/ same flavor-less names */ + return local_len == 0 || targ_len == 0 || + (local_len == targ_len && + strncmp(local_name, targ_name, local_len) == 0); + } + case BTF_KIND_INT: + /* just reject deprecated bitfield-like integers; all other + * integers are by default compatible between each other + */ + return btf_int_offset(local_type) == 0 && + btf_int_offset(targ_type) == 0; + case BTF_KIND_ARRAY: + local_id = btf_array(local_type)->type; + targ_id = btf_array(targ_type)->type; + goto recur; + default: + pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", + btf_kind(local_type), local_id, targ_id); + return 0; + } +} + +/* + * Given single high-level named field accessor in local type, find + * corresponding high-level accessor for a target type. Along the way, + * maintain low-level spec for target as well. Also keep updating target + * bit offset. + * + * Searching is performed through recursive exhaustive enumeration of all + * fields of a struct/union. If there are any anonymous (embedded) + * structs/unions, they are recursively searched as well. If field with + * desired name is found, check compatibility between local and target types, + * before returning result. + * + * 1 is returned, if field is found. + * 0 is returned if no compatible field is found. + * <0 is returned on error. + */ +static int bpf_core_match_member(const struct btf *local_btf, + const struct bpf_core_accessor *local_acc, + const struct btf *targ_btf, + __u32 targ_id, + struct bpf_core_spec *spec, + __u32 *next_targ_id) +{ + const struct btf_type *local_type, *targ_type; + const struct btf_member *local_member, *m; + const char *local_name, *targ_name; + __u32 local_id; + int i, n, found; + + targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); + if (!targ_type) + return -EINVAL; + if (!btf_is_composite(targ_type)) + return 0; + + local_id = local_acc->type_id; + local_type = btf__type_by_id(local_btf, local_id); + local_member = btf_members(local_type) + local_acc->idx; + local_name = btf__name_by_offset(local_btf, local_member->name_off); + + n = btf_vlen(targ_type); + m = btf_members(targ_type); + for (i = 0; i < n; i++, m++) { + __u32 bit_offset; + + bit_offset = btf_member_bit_offset(targ_type, i); + + /* too deep struct/union/array nesting */ + if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) + return -E2BIG; + + /* speculate this member will be the good one */ + spec->bit_offset += bit_offset; + spec->raw_spec[spec->raw_len++] = i; + + targ_name = btf__name_by_offset(targ_btf, m->name_off); + if (str_is_empty(targ_name)) { + /* embedded struct/union, we need to go deeper */ + found = bpf_core_match_member(local_btf, local_acc, + targ_btf, m->type, + spec, next_targ_id); + if (found) /* either found or error */ + return found; + } else if (strcmp(local_name, targ_name) == 0) { + /* matching named field */ + struct bpf_core_accessor *targ_acc; + + targ_acc = &spec->spec[spec->len++]; + targ_acc->type_id = targ_id; + targ_acc->idx = i; + targ_acc->name = targ_name; + + *next_targ_id = m->type; + found = bpf_core_fields_are_compat(local_btf, + local_member->type, + targ_btf, m->type); + if (!found) + spec->len--; /* pop accessor */ + return found; + } + /* member turned out not to be what we looked for */ + spec->bit_offset -= bit_offset; + spec->raw_len--; + } + + return 0; +} + +/* + * Try to match local spec to a target type and, if successful, produce full + * target spec (high-level, low-level + bit offset). + */ +static int bpf_core_spec_match(struct bpf_core_spec *local_spec, + const struct btf *targ_btf, __u32 targ_id, + struct bpf_core_spec *targ_spec) +{ + const struct btf_type *targ_type; + const struct bpf_core_accessor *local_acc; + struct bpf_core_accessor *targ_acc; + int i, sz, matched; + + memset(targ_spec, 0, sizeof(*targ_spec)); + targ_spec->btf = targ_btf; + targ_spec->root_type_id = targ_id; + targ_spec->relo_kind = local_spec->relo_kind; + + if (core_relo_is_type_based(local_spec->relo_kind)) { + return bpf_core_types_are_compat(local_spec->btf, + local_spec->root_type_id, + targ_btf, targ_id); + } + + local_acc = &local_spec->spec[0]; + targ_acc = &targ_spec->spec[0]; + + if (core_relo_is_enumval_based(local_spec->relo_kind)) { + size_t local_essent_len, targ_essent_len; + const struct btf_enum *e; + const char *targ_name; + + /* has to resolve to an enum */ + targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); + if (!btf_is_enum(targ_type)) + return 0; + + local_essent_len = bpf_core_essential_name_len(local_acc->name); + + for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { + targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); + targ_essent_len = bpf_core_essential_name_len(targ_name); + if (targ_essent_len != local_essent_len) + continue; + if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { + targ_acc->type_id = targ_id; + targ_acc->idx = i; + targ_acc->name = targ_name; + targ_spec->len++; + targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; + targ_spec->raw_len++; + return 1; + } + } + return 0; + } + + if (!core_relo_is_field_based(local_spec->relo_kind)) + return -EINVAL; + + for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { + targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, + &targ_id); + if (!targ_type) + return -EINVAL; + + if (local_acc->name) { + matched = bpf_core_match_member(local_spec->btf, + local_acc, + targ_btf, targ_id, + targ_spec, &targ_id); + if (matched <= 0) + return matched; + } else { + /* for i=0, targ_id is already treated as array element + * type (because it's the original struct), for others + * we should find array element type first + */ + if (i > 0) { + const struct btf_array *a; + bool flex; + + if (!btf_is_array(targ_type)) + return 0; + + a = btf_array(targ_type); + flex = is_flex_arr(targ_btf, targ_acc - 1, a); + if (!flex && local_acc->idx >= a->nelems) + return 0; + if (!skip_mods_and_typedefs(targ_btf, a->type, + &targ_id)) + return -EINVAL; + } + + /* too deep struct/union/array nesting */ + if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) + return -E2BIG; + + targ_acc->type_id = targ_id; + targ_acc->idx = local_acc->idx; + targ_acc->name = NULL; + targ_spec->len++; + targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; + targ_spec->raw_len++; + + sz = btf__resolve_size(targ_btf, targ_id); + if (sz < 0) + return sz; + targ_spec->bit_offset += local_acc->idx * sz * 8; + } + } + + return 1; +} + +static int bpf_core_calc_field_relo(const char *prog_name, + const struct bpf_core_relo *relo, + const struct bpf_core_spec *spec, + __u32 *val, __u32 *field_sz, __u32 *type_id, + bool *validate) +{ + const struct bpf_core_accessor *acc; + const struct btf_type *t; + __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; + const struct btf_member *m; + const struct btf_type *mt; + bool bitfield; + __s64 sz; + + *field_sz = 0; + + if (relo->kind == BPF_FIELD_EXISTS) { + *val = spec ? 1 : 0; + return 0; + } + + if (!spec) + return -EUCLEAN; /* request instruction poisoning */ + + acc = &spec->spec[spec->len - 1]; + t = btf__type_by_id(spec->btf, acc->type_id); + + /* a[n] accessor needs special handling */ + if (!acc->name) { + if (relo->kind == BPF_FIELD_BYTE_OFFSET) { + *val = spec->bit_offset / 8; + /* remember field size for load/store mem size */ + sz = btf__resolve_size(spec->btf, acc->type_id); + if (sz < 0) + return -EINVAL; + *field_sz = sz; + *type_id = acc->type_id; + } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { + sz = btf__resolve_size(spec->btf, acc->type_id); + if (sz < 0) + return -EINVAL; + *val = sz; + } else { + pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", + prog_name, relo->kind, relo->insn_off / 8); + return -EINVAL; + } + if (validate) + *validate = true; + return 0; + } + + m = btf_members(t) + acc->idx; + mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); + bit_off = spec->bit_offset; + bit_sz = btf_member_bitfield_size(t, acc->idx); + + bitfield = bit_sz > 0; + if (bitfield) { + byte_sz = mt->size; + byte_off = bit_off / 8 / byte_sz * byte_sz; + /* figure out smallest int size necessary for bitfield load */ + while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { + if (byte_sz >= 8) { + /* bitfield can't be read with 64-bit read */ + pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", + prog_name, relo->kind, relo->insn_off / 8); + return -E2BIG; + } + byte_sz *= 2; + byte_off = bit_off / 8 / byte_sz * byte_sz; + } + } else { + sz = btf__resolve_size(spec->btf, field_type_id); + if (sz < 0) + return -EINVAL; + byte_sz = sz; + byte_off = spec->bit_offset / 8; + bit_sz = byte_sz * 8; + } + + /* for bitfields, all the relocatable aspects are ambiguous and we + * might disagree with compiler, so turn off validation of expected + * value, except for signedness + */ + if (validate) + *validate = !bitfield; + + switch (relo->kind) { + case BPF_FIELD_BYTE_OFFSET: + *val = byte_off; + if (!bitfield) { + *field_sz = byte_sz; + *type_id = field_type_id; + } + break; + case BPF_FIELD_BYTE_SIZE: + *val = byte_sz; + break; + case BPF_FIELD_SIGNED: + /* enums will be assumed unsigned */ + *val = btf_is_enum(mt) || + (btf_int_encoding(mt) & BTF_INT_SIGNED); + if (validate) + *validate = true; /* signedness is never ambiguous */ + break; + case BPF_FIELD_LSHIFT_U64: +#if __BYTE_ORDER == __LITTLE_ENDIAN + *val = 64 - (bit_off + bit_sz - byte_off * 8); +#else + *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); +#endif + break; + case BPF_FIELD_RSHIFT_U64: + *val = 64 - bit_sz; + if (validate) + *validate = true; /* right shift is never ambiguous */ + break; + case BPF_FIELD_EXISTS: + default: + return -EOPNOTSUPP; + } + + return 0; +} + +static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, + const struct bpf_core_spec *spec, + __u32 *val) +{ + __s64 sz; + + /* type-based relos return zero when target type is not found */ + if (!spec) { + *val = 0; + return 0; + } + + switch (relo->kind) { + case BPF_TYPE_ID_TARGET: + *val = spec->root_type_id; + break; + case BPF_TYPE_EXISTS: + *val = 1; + break; + case BPF_TYPE_SIZE: + sz = btf__resolve_size(spec->btf, spec->root_type_id); + if (sz < 0) + return -EINVAL; + *val = sz; + break; + case BPF_TYPE_ID_LOCAL: + /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ + default: + return -EOPNOTSUPP; + } + + return 0; +} + +static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, + const struct bpf_core_spec *spec, + __u32 *val) +{ + const struct btf_type *t; + const struct btf_enum *e; + + switch (relo->kind) { + case BPF_ENUMVAL_EXISTS: + *val = spec ? 1 : 0; + break; + case BPF_ENUMVAL_VALUE: + if (!spec) + return -EUCLEAN; /* request instruction poisoning */ + t = btf__type_by_id(spec->btf, spec->spec[0].type_id); + e = btf_enum(t) + spec->spec[0].idx; + *val = e->val; + break; + default: + return -EOPNOTSUPP; + } + + return 0; +} + +struct bpf_core_relo_res +{ + /* expected value in the instruction, unless validate == false */ + __u32 orig_val; + /* new value that needs to be patched up to */ + __u32 new_val; + /* relocation unsuccessful, poison instruction, but don't fail load */ + bool poison; + /* some relocations can't be validated against orig_val */ + bool validate; + /* for field byte offset relocations or the forms: + * *(T *)(rX + <off>) = rY + * rX = *(T *)(rY + <off>), + * we remember original and resolved field size to adjust direct + * memory loads of pointers and integers; this is necessary for 32-bit + * host kernel architectures, but also allows to automatically + * relocate fields that were resized from, e.g., u32 to u64, etc. + */ + bool fail_memsz_adjust; + __u32 orig_sz; + __u32 orig_type_id; + __u32 new_sz; + __u32 new_type_id; +}; + +/* Calculate original and target relocation values, given local and target + * specs and relocation kind. These values are calculated for each candidate. + * If there are multiple candidates, resulting values should all be consistent + * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. + * If instruction has to be poisoned, *poison will be set to true. + */ +static int bpf_core_calc_relo(const char *prog_name, + const struct bpf_core_relo *relo, + int relo_idx, + const struct bpf_core_spec *local_spec, + const struct bpf_core_spec *targ_spec, + struct bpf_core_relo_res *res) +{ + int err = -EOPNOTSUPP; + + res->orig_val = 0; + res->new_val = 0; + res->poison = false; + res->validate = true; + res->fail_memsz_adjust = false; + res->orig_sz = res->new_sz = 0; + res->orig_type_id = res->new_type_id = 0; + + if (core_relo_is_field_based(relo->kind)) { + err = bpf_core_calc_field_relo(prog_name, relo, local_spec, + &res->orig_val, &res->orig_sz, + &res->orig_type_id, &res->validate); + err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec, + &res->new_val, &res->new_sz, + &res->new_type_id, NULL); + if (err) + goto done; + /* Validate if it's safe to adjust load/store memory size. + * Adjustments are performed only if original and new memory + * sizes differ. + */ + res->fail_memsz_adjust = false; + if (res->orig_sz != res->new_sz) { + const struct btf_type *orig_t, *new_t; + + orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); + new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); + + /* There are two use cases in which it's safe to + * adjust load/store's mem size: + * - reading a 32-bit kernel pointer, while on BPF + * size pointers are always 64-bit; in this case + * it's safe to "downsize" instruction size due to + * pointer being treated as unsigned integer with + * zero-extended upper 32-bits; + * - reading unsigned integers, again due to + * zero-extension is preserving the value correctly. + * + * In all other cases it's incorrect to attempt to + * load/store field because read value will be + * incorrect, so we poison relocated instruction. + */ + if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) + goto done; + if (btf_is_int(orig_t) && btf_is_int(new_t) && + btf_int_encoding(orig_t) != BTF_INT_SIGNED && + btf_int_encoding(new_t) != BTF_INT_SIGNED) + goto done; + + /* mark as invalid mem size adjustment, but this will + * only be checked for LDX/STX/ST insns + */ + res->fail_memsz_adjust = true; + } + } else if (core_relo_is_type_based(relo->kind)) { + err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); + err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); + } else if (core_relo_is_enumval_based(relo->kind)) { + err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); + err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); + } + +done: + if (err == -EUCLEAN) { + /* EUCLEAN is used to signal instruction poisoning request */ + res->poison = true; + err = 0; + } else if (err == -EOPNOTSUPP) { + /* EOPNOTSUPP means unknown/unsupported relocation */ + pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", + prog_name, relo_idx, core_relo_kind_str(relo->kind), + relo->kind, relo->insn_off / 8); + } + + return err; +} + +/* + * Turn instruction for which CO_RE relocation failed into invalid one with + * distinct signature. + */ +static void bpf_core_poison_insn(const char *prog_name, int relo_idx, + int insn_idx, struct bpf_insn *insn) +{ + pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", + prog_name, relo_idx, insn_idx); + insn->code = BPF_JMP | BPF_CALL; + insn->dst_reg = 0; + insn->src_reg = 0; + insn->off = 0; + /* if this instruction is reachable (not a dead code), + * verifier will complain with the following message: + * invalid func unknown#195896080 + */ + insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ +} + +static int insn_bpf_size_to_bytes(struct bpf_insn *insn) +{ + switch (BPF_SIZE(insn->code)) { + case BPF_DW: return 8; + case BPF_W: return 4; + case BPF_H: return 2; + case BPF_B: return 1; + default: return -1; + } +} + +static int insn_bytes_to_bpf_size(__u32 sz) +{ + switch (sz) { + case 8: return BPF_DW; + case 4: return BPF_W; + case 2: return BPF_H; + case 1: return BPF_B; + default: return -1; + } +} + +/* + * Patch relocatable BPF instruction. + * + * Patched value is determined by relocation kind and target specification. + * For existence relocations target spec will be NULL if field/type is not found. + * Expected insn->imm value is determined using relocation kind and local + * spec, and is checked before patching instruction. If actual insn->imm value + * is wrong, bail out with error. + * + * Currently supported classes of BPF instruction are: + * 1. rX = <imm> (assignment with immediate operand); + * 2. rX += <imm> (arithmetic operations with immediate operand); + * 3. rX = <imm64> (load with 64-bit immediate value); + * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; + * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; + * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. + */ +static int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn, + int insn_idx, const struct bpf_core_relo *relo, + int relo_idx, const struct bpf_core_relo_res *res) +{ + __u32 orig_val, new_val; + __u8 class; + + class = BPF_CLASS(insn->code); + + if (res->poison) { +poison: + /* poison second part of ldimm64 to avoid confusing error from + * verifier about "unknown opcode 00" + */ + if (is_ldimm64_insn(insn)) + bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1); + bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn); + return 0; + } + + orig_val = res->orig_val; + new_val = res->new_val; + + switch (class) { + case BPF_ALU: + case BPF_ALU64: + if (BPF_SRC(insn->code) != BPF_K) + return -EINVAL; + if (res->validate && insn->imm != orig_val) { + pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", + prog_name, relo_idx, + insn_idx, insn->imm, orig_val, new_val); + return -EINVAL; + } + orig_val = insn->imm; + insn->imm = new_val; + pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", + prog_name, relo_idx, insn_idx, + orig_val, new_val); + break; + case BPF_LDX: + case BPF_ST: + case BPF_STX: + if (res->validate && insn->off != orig_val) { + pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", + prog_name, relo_idx, insn_idx, insn->off, orig_val, new_val); + return -EINVAL; + } + if (new_val > SHRT_MAX) { + pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", + prog_name, relo_idx, insn_idx, new_val); + return -ERANGE; + } + if (res->fail_memsz_adjust) { + pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " + "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", + prog_name, relo_idx, insn_idx); + goto poison; + } + + orig_val = insn->off; + insn->off = new_val; + pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", + prog_name, relo_idx, insn_idx, orig_val, new_val); + + if (res->new_sz != res->orig_sz) { + int insn_bytes_sz, insn_bpf_sz; + + insn_bytes_sz = insn_bpf_size_to_bytes(insn); + if (insn_bytes_sz != res->orig_sz) { + pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", + prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); + return -EINVAL; + } + + insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); + if (insn_bpf_sz < 0) { + pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", + prog_name, relo_idx, insn_idx, res->new_sz); + return -EINVAL; + } + + insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); + pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", + prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz); + } + break; + case BPF_LD: { + __u64 imm; + + if (!is_ldimm64_insn(insn) || + insn[0].src_reg != 0 || insn[0].off != 0 || + insn[1].code != 0 || insn[1].dst_reg != 0 || + insn[1].src_reg != 0 || insn[1].off != 0) { + pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", + prog_name, relo_idx, insn_idx); + return -EINVAL; + } + + imm = insn[0].imm + ((__u64)insn[1].imm << 32); + if (res->validate && imm != orig_val) { + pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", + prog_name, relo_idx, + insn_idx, (unsigned long long)imm, + orig_val, new_val); + return -EINVAL; + } + + insn[0].imm = new_val; + insn[1].imm = 0; /* currently only 32-bit values are supported */ + pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", + prog_name, relo_idx, insn_idx, + (unsigned long long)imm, new_val); + break; + } + default: + pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", + prog_name, relo_idx, insn_idx, insn->code, + insn->src_reg, insn->dst_reg, insn->off, insn->imm); + return -EINVAL; + } + + return 0; +} + +/* Output spec definition in the format: + * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, + * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b + */ +static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) +{ + const struct btf_type *t; + const struct btf_enum *e; + const char *s; + __u32 type_id; + int i; + + type_id = spec->root_type_id; + t = btf__type_by_id(spec->btf, type_id); + s = btf__name_by_offset(spec->btf, t->name_off); + + libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); + + if (core_relo_is_type_based(spec->relo_kind)) + return; + + if (core_relo_is_enumval_based(spec->relo_kind)) { + t = skip_mods_and_typedefs(spec->btf, type_id, NULL); + e = btf_enum(t) + spec->raw_spec[0]; + s = btf__name_by_offset(spec->btf, e->name_off); + + libbpf_print(level, "::%s = %u", s, e->val); + return; + } + + if (core_relo_is_field_based(spec->relo_kind)) { + for (i = 0; i < spec->len; i++) { + if (spec->spec[i].name) + libbpf_print(level, ".%s", spec->spec[i].name); + else if (i > 0 || spec->spec[i].idx > 0) + libbpf_print(level, "[%u]", spec->spec[i].idx); + } + + libbpf_print(level, " ("); + for (i = 0; i < spec->raw_len; i++) + libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); + + if (spec->bit_offset % 8) + libbpf_print(level, " @ offset %u.%u)", + spec->bit_offset / 8, spec->bit_offset % 8); + else + libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); + return; + } +} + +/* + * CO-RE relocate single instruction. + * + * The outline and important points of the algorithm: + * 1. For given local type, find corresponding candidate target types. + * Candidate type is a type with the same "essential" name, ignoring + * everything after last triple underscore (___). E.g., `sample`, + * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates + * for each other. Names with triple underscore are referred to as + * "flavors" and are useful, among other things, to allow to + * specify/support incompatible variations of the same kernel struct, which + * might differ between different kernel versions and/or build + * configurations. + * + * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C + * converter, when deduplicated BTF of a kernel still contains more than + * one different types with the same name. In that case, ___2, ___3, etc + * are appended starting from second name conflict. But start flavors are + * also useful to be defined "locally", in BPF program, to extract same + * data from incompatible changes between different kernel + * versions/configurations. For instance, to handle field renames between + * kernel versions, one can use two flavors of the struct name with the + * same common name and use conditional relocations to extract that field, + * depending on target kernel version. + * 2. For each candidate type, try to match local specification to this + * candidate target type. Matching involves finding corresponding + * high-level spec accessors, meaning that all named fields should match, + * as well as all array accesses should be within the actual bounds. Also, + * types should be compatible (see bpf_core_fields_are_compat for details). + * 3. It is supported and expected that there might be multiple flavors + * matching the spec. As long as all the specs resolve to the same set of + * offsets across all candidates, there is no error. If there is any + * ambiguity, CO-RE relocation will fail. This is necessary to accomodate + * imprefection of BTF deduplication, which can cause slight duplication of + * the same BTF type, if some directly or indirectly referenced (by + * pointer) type gets resolved to different actual types in different + * object files. If such situation occurs, deduplicated BTF will end up + * with two (or more) structurally identical types, which differ only in + * types they refer to through pointer. This should be OK in most cases and + * is not an error. + * 4. Candidate types search is performed by linearly scanning through all + * types in target BTF. It is anticipated that this is overall more + * efficient memory-wise and not significantly worse (if not better) + * CPU-wise compared to prebuilding a map from all local type names to + * a list of candidate type names. It's also sped up by caching resolved + * list of matching candidates per each local "root" type ID, that has at + * least one bpf_core_relo associated with it. This list is shared + * between multiple relocations for the same type ID and is updated as some + * of the candidates are pruned due to structural incompatibility. + */ +int bpf_core_apply_relo_insn(const char *prog_name, struct bpf_insn *insn, + int insn_idx, + const struct bpf_core_relo *relo, + int relo_idx, + const struct btf *local_btf, + struct bpf_core_cand_list *cands) +{ + struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; + struct bpf_core_relo_res cand_res, targ_res; + const struct btf_type *local_type; + const char *local_name; + __u32 local_id; + const char *spec_str; + int i, j, err; + + local_id = relo->type_id; + local_type = btf__type_by_id(local_btf, local_id); + if (!local_type) + return -EINVAL; + + local_name = btf__name_by_offset(local_btf, local_type->name_off); + if (!local_name) + return -EINVAL; + + spec_str = btf__name_by_offset(local_btf, relo->access_str_off); + if (str_is_empty(spec_str)) + return -EINVAL; + + err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); + if (err) { + pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", + prog_name, relo_idx, local_id, btf_kind_str(local_type), + str_is_empty(local_name) ? "<anon>" : local_name, + spec_str, err); + return -EINVAL; + } + + pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog_name, + relo_idx, core_relo_kind_str(relo->kind), relo->kind); + bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); + libbpf_print(LIBBPF_DEBUG, "\n"); + + /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ + if (relo->kind == BPF_TYPE_ID_LOCAL) { + targ_res.validate = true; + targ_res.poison = false; + targ_res.orig_val = local_spec.root_type_id; + targ_res.new_val = local_spec.root_type_id; + goto patch_insn; + } + + /* libbpf doesn't support candidate search for anonymous types */ + if (str_is_empty(spec_str)) { + pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", + prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); + return -EOPNOTSUPP; + } + + + for (i = 0, j = 0; i < cands->len; i++) { + err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, + cands->cands[i].id, &cand_spec); + if (err < 0) { + pr_warn("prog '%s': relo #%d: error matching candidate #%d ", + prog_name, relo_idx, i); + bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); + libbpf_print(LIBBPF_WARN, ": %d\n", err); + return err; + } + + pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog_name, + relo_idx, err == 0 ? "non-matching" : "matching", i); + bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); + libbpf_print(LIBBPF_DEBUG, "\n"); + + if (err == 0) + continue; + + err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, &cand_spec, &cand_res); + if (err) + return err; + + if (j == 0) { + targ_res = cand_res; + targ_spec = cand_spec; + } else if (cand_spec.bit_offset != targ_spec.bit_offset) { + /* if there are many field relo candidates, they + * should all resolve to the same bit offset + */ + pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", + prog_name, relo_idx, cand_spec.bit_offset, + targ_spec.bit_offset); + return -EINVAL; + } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { + /* all candidates should result in the same relocation + * decision and value, otherwise it's dangerous to + * proceed due to ambiguity + */ + pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", + prog_name, relo_idx, + cand_res.poison ? "failure" : "success", cand_res.new_val, + targ_res.poison ? "failure" : "success", targ_res.new_val); + return -EINVAL; + } + + cands->cands[j++] = cands->cands[i]; + } + + /* + * For BPF_FIELD_EXISTS relo or when used BPF program has field + * existence checks or kernel version/config checks, it's expected + * that we might not find any candidates. In this case, if field + * wasn't found in any candidate, the list of candidates shouldn't + * change at all, we'll just handle relocating appropriately, + * depending on relo's kind. + */ + if (j > 0) + cands->len = j; + + /* + * If no candidates were found, it might be both a programmer error, + * as well as expected case, depending whether instruction w/ + * relocation is guarded in some way that makes it unreachable (dead + * code) if relocation can't be resolved. This is handled in + * bpf_core_patch_insn() uniformly by replacing that instruction with + * BPF helper call insn (using invalid helper ID). If that instruction + * is indeed unreachable, then it will be ignored and eliminated by + * verifier. If it was an error, then verifier will complain and point + * to a specific instruction number in its log. + */ + if (j == 0) { + pr_debug("prog '%s': relo #%d: no matching targets found\n", + prog_name, relo_idx); + + /* calculate single target relo result explicitly */ + err = bpf_core_calc_relo(prog_name, relo, relo_idx, &local_spec, NULL, &targ_res); + if (err) + return err; + } + +patch_insn: + /* bpf_core_patch_insn() should know how to handle missing targ_spec */ + err = bpf_core_patch_insn(prog_name, insn, insn_idx, relo, relo_idx, &targ_res); + if (err) { + pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", + prog_name, relo_idx, relo->insn_off / 8, err); + return -EINVAL; + } + + return 0; +} diff --git a/kernel/bpf/relo_core.h b/kernel/bpf/relo_core.h new file mode 100644 index 000000000000..3b9f8f18346c --- /dev/null +++ b/kernel/bpf/relo_core.h @@ -0,0 +1,100 @@ +/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ +/* Copyright (c) 2019 Facebook */ + +#ifndef __RELO_CORE_H +#define __RELO_CORE_H + +/* bpf_core_relo_kind encodes which aspect of captured field/type/enum value + * has to be adjusted by relocations. + */ +enum bpf_core_relo_kind { + BPF_FIELD_BYTE_OFFSET = 0, /* field byte offset */ + BPF_FIELD_BYTE_SIZE = 1, /* field size in bytes */ + BPF_FIELD_EXISTS = 2, /* field existence in target kernel */ + BPF_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */ + BPF_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */ + BPF_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */ + BPF_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */ + BPF_TYPE_ID_TARGET = 7, /* type ID in target kernel */ + BPF_TYPE_EXISTS = 8, /* type existence in target kernel */ + BPF_TYPE_SIZE = 9, /* type size in bytes */ + BPF_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */ + BPF_ENUMVAL_VALUE = 11, /* enum value integer value */ +}; + +/* The minimum bpf_core_relo checked by the loader + * + * CO-RE relocation captures the following data: + * - insn_off - instruction offset (in bytes) within a BPF program that needs + * its insn->imm field to be relocated with actual field info; + * - type_id - BTF type ID of the "root" (containing) entity of a relocatable + * type or field; + * - access_str_off - offset into corresponding .BTF string section. String + * interpretation depends on specific relocation kind: + * - for field-based relocations, string encodes an accessed field using + * a sequence of field and array indices, separated by colon (:). It's + * conceptually very close to LLVM's getelementptr ([0]) instruction's + * arguments for identifying offset to a field. + * - for type-based relocations, strings is expected to be just "0"; + * - for enum value-based relocations, string contains an index of enum + * value within its enum type; + * + * Example to provide a better feel. + * + * struct sample { + * int a; + * struct { + * int b[10]; + * }; + * }; + * + * struct sample *s = ...; + * int x = &s->a; // encoded as "0:0" (a is field #0) + * int y = &s->b[5]; // encoded as "0:1:0:5" (anon struct is field #1, + * // b is field #0 inside anon struct, accessing elem #5) + * int z = &s[10]->b; // encoded as "10:1" (ptr is used as an array) + * + * type_id for all relocs in this example will capture BTF type id of + * `struct sample`. + * + * Such relocation is emitted when using __builtin_preserve_access_index() + * Clang built-in, passing expression that captures field address, e.g.: + * + * bpf_probe_read(&dst, sizeof(dst), + * __builtin_preserve_access_index(&src->a.b.c)); + * + * In this case Clang will emit field relocation recording necessary data to + * be able to find offset of embedded `a.b.c` field within `src` struct. + * + * [0] https://llvm.org/docs/LangRef.html#getelementptr-instruction + */ +struct bpf_core_relo { + __u32 insn_off; + __u32 type_id; + __u32 access_str_off; + enum bpf_core_relo_kind kind; +}; + +struct bpf_core_cand { + const struct btf *btf; + const struct btf_type *t; + const char *name; + __u32 id; +}; + +/* dynamically sized list of type IDs and its associated struct btf */ +struct bpf_core_cand_list { + struct bpf_core_cand *cands; + int len; +}; + +int bpf_core_apply_relo_insn(const char *prog_name, + struct bpf_insn *insn, int insn_idx, + const struct bpf_core_relo *relo, int relo_idx, + const struct btf *local_btf, + struct bpf_core_cand_list *cands); +int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, + const struct btf *targ_btf, __u32 targ_id); + +size_t bpf_core_essential_name_len(const char *name); +#endif -- 2.31.1