On Thu, May 27, 2021 at 9:00 AM Alan Maguire <alan.maguire@xxxxxxxxxx> wrote: > > Add a BTF dumper for typed data, so that the user can dump a typed > version of the data provided. > > The API is > > int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, > void *data, size_t byte_sz, > const struct btf_dump_type_data_opts *opts); > > ...where the id is the BTF id of the data pointed to by the "void *" > argument; for example the BTF id of "struct sk_buff" for a > "struct skb *" data pointer. Options supported are > > - a starting indent level (indent_lvl) > - a set of boolean options to control dump display, similar to those > used for BPF helper bpf_snprintf_btf(). Options are > - compact : omit newlines and other indentation > - skip_names: omit member names > - emit_zeroes: show zero-value members > > Default output format is identical to that dumped by bpf_snprintf_btf(), > for example a "struct sk_buff" representation would look like this: > > struct sk_buff){ > (union){ > (struct){ > .next = (struct sk_buff *)0xffffffffffffffff, > .prev = (struct sk_buff *)0xffffffffffffffff, > (union){ > .dev = (struct net_device *)0xffffffffffffffff, > .dev_scratch = (long unsigned int)18446744073709551615, > }, > }, > ... Is the '\t' as a default indentation filler a requirement? With 8 spaces per tab this gets wide really fast. 2 or 4 spaces might be a better default? And it probably would be good to let users specify this as a string (e.g., "indent_str"), which could be anything the user wants, from empty string to multiple tabs to "..." to whatever else. If I needed to dump something with this API, I'd probably use 2 spaces, for instance. But I can see how other users might want something else, so making this customizable seems like a good thing? > > If the data structure is larger than the *byte_sz* > number of bytes that are available in *data*, as much > of the data as possible will be dumped and -E2BIG will > be returned. This is useful as tracers will sometimes > not be able to capture all of the data associated with > a type; for example a "struct task_struct" is ~16k. > Being able to specify that only a subset is available is > important for such cases. > > Signed-off-by: Alan Maguire <alan.maguire@xxxxxxxxxx> > --- I'll do another pass next week, I ran out of time, it's a bit of a big patch, sorry. But left few comments, please take a look. > tools/lib/bpf/btf.h | 17 + > tools/lib/bpf/btf_dump.c | 901 +++++++++++++++++++++++++++++++++++++++++++++++ > tools/lib/bpf/libbpf.map | 5 + > 3 files changed, 923 insertions(+) > > diff --git a/tools/lib/bpf/btf.h b/tools/lib/bpf/btf.h > index b54f1c3..234aa97 100644 > --- a/tools/lib/bpf/btf.h > +++ b/tools/lib/bpf/btf.h > @@ -184,6 +184,23 @@ struct btf_dump_emit_type_decl_opts { > btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, > const struct btf_dump_emit_type_decl_opts *opts); > > + > +struct btf_dump_type_data_opts { > + /* size of this struct, for forward/backward compatibility */ > + size_t sz; > + int indent_level; > + /* below match "show" flags for bpf_show_snprintf() */ > + bool compact; /* no newlines/tabs */ > + bool skip_names; /* skip member/type names */ > + bool emit_zeroes; /* show 0-valued fields */ please add size_t: 0; as the last member to avoid various issues with non-zero padding. We've been doing it for a few not perfectly aligned opts recently and that seems to work good in practice. > +}; > +#define btf_dump_type_data_opts__last_field emit_zeroes > + > +LIBBPF_API int > +btf_dump__dump_type_data(struct btf_dump *d, __u32 id, > + void *data, size_t byte_sz, can't get over data vs byte_sz naming inconsistency.... why not data and data_sz? also, const void *data? > + const struct btf_dump_type_data_opts *opts); > + > /* > * A set of helpers for easier BTF types handling > */ > diff --git a/tools/lib/bpf/btf_dump.c b/tools/lib/bpf/btf_dump.c > index 5e2809d..27baa6a 100644 > --- a/tools/lib/bpf/btf_dump.c > +++ b/tools/lib/bpf/btf_dump.c > @@ -10,6 +10,8 @@ > #include <stddef.h> > #include <stdlib.h> > #include <string.h> > +#include <ctype.h> > +#include <endian.h> > #include <errno.h> > #include <linux/err.h> > #include <linux/btf.h> > @@ -19,6 +21,13 @@ > #include "libbpf.h" > #include "libbpf_internal.h" > > +#define BITS_PER_BYTE 8 > +#define BITS_PER_U128 128 > +#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) > +#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) > +#define BITS_ROUNDDOWN_BYTES(bits) ((bits) / 8) > +#define BITS_ROUNDUP_BYTES(bits) (roundup(bits, 8)) > + > static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; > static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; > > @@ -53,6 +62,25 @@ struct btf_dump_type_aux_state { > __u8 referenced: 1; > }; > > +/* > + * Common internal data for BTF type data dump operations. > + */ > +struct btf_dump_data { > + void *data_end; /* end of valid data to show */ > + bool compact; > + bool skip_names; > + bool emit_zeroes; > + __u8 indent_lvl; /* base indent level */ > + /* below are used during iteration */ > + struct { > + __u8 depth; > + __u8 array_member:1, > + array_terminated:1, > + array_ischar:1; > + __u32 bitfield_size; > + } state; > +}; > + > struct btf_dump { > const struct btf *btf; > const struct btf_ext *btf_ext; > @@ -89,6 +117,10 @@ struct btf_dump { > * name occurrences > */ > struct hashmap *ident_names; > + /* > + * data for typed display. > + */ > + struct btf_dump_data data; given it's not always used, should this be allocated lazily only if necessary? > }; > > static size_t str_hash_fn(const void *key, void *ctx) > @@ -1392,6 +1424,91 @@ static void btf_dump_emit_type_chain(struct btf_dump *d, > btf_dump_emit_name(d, fname, last_was_ptr); > } > > +/* show type name as [.fname =] (type_name) */ > +static void btf_dump_emit_type_name(struct btf_dump *d, __u32 id, > + const char *fname, int lvl, bool toplevel) Sorry, I didn't get from your cover letter why btf_dump__emit_type_decl() doesn't do what you need it to do. Can you please elaborate with a simple example? > +{ > + > + const struct btf_type *t, *child; > + const char *name; > + __u16 kind; > + > + /* for array members, we don't bother emitting type name for each > + * member to avoid the redundancy of > + * .name = (char[])[(char)'f',(char)'o',(char)'o',] > + */ > + if (d->data.state.array_member) > + return; > + > + t = btf__type_by_id(d->btf, id); > + kind = btf_kind(t); > + > + /* avoid type name specification for variable/section; it will be done > + * for the associated variable value(s). Also skip for function > + * prototypes. > + */ > + switch (kind) { > + case BTF_KIND_VAR: > + case BTF_KIND_DATASEC: > + case BTF_KIND_FUNC_PROTO: hm... why skipping func_proto? seems useful when printing all kinds of opts struct? > + return; > + default: > + break; > + } > + > + if (toplevel) { > + if (fname && strlen(fname) > 0) > + btf_dump_printf(d, ".%s = ", fname); > + btf_dump_printf(d, "("); > + } ".field = " part is not really a type name, can't it be done outside? > + > + switch (kind) { > + case BTF_KIND_INT: > + name = btf_name_of(d, t->name_off); > + btf_dump_printf(d, "%s", name); > + break; > + case BTF_KIND_STRUCT: > + case BTF_KIND_UNION: > + name = btf_dump_type_name(d, id); > + btf_dump_printf(d, "%s%s%s", > + btf_is_struct(t) ? "struct" : "union", > + strlen(name) > 0 ? " " : "", > + name); > + break; > + case BTF_KIND_ENUM: > + btf_dump_emit_enum_fwd(d, id, t); > + break; > + case BTF_KIND_TYPEDEF: > + btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); > + break; > + case BTF_KIND_VOLATILE: > + case BTF_KIND_CONST: > + case BTF_KIND_RESTRICT: > + /* modifiers are omitted from the cast to save space */ > + btf_dump_emit_type_name(d, t->type, NULL, lvl, false); > + break; > + case BTF_KIND_PTR: > + btf_dump_emit_type_name(d, t->type, NULL, lvl, false); > + child = btf__type_by_id(d->btf, t->type); > + btf_dump_printf(d, > + btf_kind(child) == BTF_KIND_PTR ? "*" : " *"); > + break; > + case BTF_KIND_ARRAY: { > + const struct btf_array *a = btf_array(t); > + > + btf_dump_emit_type_name(d, a->type, NULL, lvl, false); > + btf_dump_printf(d, "[]"); > + break; > + } > + default: > + pr_warn("unexpected type when emitting type name, kind %u, id:[%u]\n", > + kind, id); > + break; > + } > + if (toplevel) > + btf_dump_printf(d, ")"); > +} > + > /* return number of duplicates (occurrences) of a given name */ > static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, > const char *orig_name) > @@ -1442,3 +1559,787 @@ static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) > { > return btf_dump_resolve_name(d, id, d->ident_names); > } > + > +static int btf_dump_dump_type_data(struct btf_dump *d, > + const char *fname, > + const struct btf_type *t, > + __u32 id, > + void *data, > + __u8 bits_offset); > + > +static const char *btf_dump_data_newline(struct btf_dump *d) > +{ > + return d->data.compact ? "" : "\n"; > +} > + > +static const char *btf_dump_data_delim(struct btf_dump *d) > +{ > + if (d->data.state.depth == 0) > + return ""; > + > + return ","; nit: use ternary like for newline? > +} > + > +static const char *btf_dump_data_pfx(struct btf_dump *d) > +{ > + int lvl = d->data.indent_lvl + d->data.state.depth; > + > + if (d->data.compact) > + lvl = 0; > + return pfx(lvl); > +} > + > +/* A macro is used here as btf_type_value[s]() appends format specifiers > + * to the format specifier passed in; these do the work of appending > + * delimiters etc while the caller simply has to specify the type values > + * in the format specifier + value(s). > + */ > +#define btf_dump_type_values(d, fmt, ...) \ > + btf_dump_printf(d, fmt "%s%s", \ > + __VA_ARGS__, \ > + btf_dump_data_delim(d), \ > + btf_dump_data_newline(d)) > + > +static int btf_dump_df_data(struct btf_dump *d, what does "df" stand for? > + const struct btf_type *t, > + __u32 id, > + void *data) > +{ > + btf_dump_printf(d, "<unsupported kind:%u>", > + BTF_INFO_KIND(t->info)); > + return -ENOTSUP; > +} > + > +static void btf_dump_int128(struct btf_dump *d, > + const struct btf_type *t, > + void *data) > +{ > + /* data points to a __int128 number. > + * Suppose > + * int128_num = *(__int128 *)data; > + * The below formulas shows what upper_num and lower_num represents: > + * upper_num = int128_num >> 64; > + * lower_num = int128_num & 0xffffffffFFFFFFFFULL; > + */ > + __u64 upper_num, lower_num; > + > +#ifdef __BIG_ENDIAN_BITFIELD > + upper_num = *(__u64 *)data; > + lower_num = *(__u64 *)(data + 8); > +#else > + upper_num = *(__u64 *)(data + 8); > + lower_num = *(__u64 *)data; > +#endif > + if (upper_num == 0) > + btf_dump_type_values(d, "0x%llx", (long long)lower_num); > + else > + btf_dump_type_values(d, "0x%llx%016llx", (long long)upper_num, > + (long long)lower_num); > +} > + > +static void btf_int128_shift(__u64 *print_num, __u16 left_shift_bits, > + __u16 right_shift_bits) > +{ > + __u64 upper_num, lower_num; > + > +#ifdef __BIG_ENDIAN_BITFIELD > + upper_num = print_num[0]; > + lower_num = print_num[1]; > +#else > + upper_num = print_num[1]; > + lower_num = print_num[0]; > +#endif > + > + /* shake out un-needed bits by shift/or operations */ > + if (left_shift_bits >= 64) { > + upper_num = lower_num << (left_shift_bits - 64); > + lower_num = 0; > + } else { > + upper_num = (upper_num << left_shift_bits) | > + (lower_num >> (64 - left_shift_bits)); > + lower_num = lower_num << left_shift_bits; > + } > + > + if (right_shift_bits >= 64) { > + lower_num = upper_num >> (right_shift_bits - 64); > + upper_num = 0; > + } else { > + lower_num = (lower_num >> right_shift_bits) | > + (upper_num << (64 - right_shift_bits)); > + upper_num = upper_num >> right_shift_bits; > + } > + > +#ifdef __BIG_ENDIAN_BITFIELD > + print_num[0] = upper_num; > + print_num[1] = lower_num; > +#else > + print_num[0] = lower_num; > + print_num[1] = upper_num; > +#endif > +} > + > +static int btf_dump_bitfield_get_data(struct btf_dump *d, > + void *data, > + __u8 bits_offset, > + __u8 nr_bits, > + __u64 *print_num) > +{ > + __u16 left_shift_bits, right_shift_bits; > + __u8 nr_copy_bytes; > + __u8 nr_copy_bits; > + > + nr_copy_bits = nr_bits + bits_offset; > + nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); > + > + memcpy(print_num, data, nr_copy_bytes); > + > +#ifdef __BIG_ENDIAN_BITFIELD > + left_shift_bits = bits_offset; > +#else > + left_shift_bits = BITS_PER_U128 - nr_copy_bits; > +#endif > + right_shift_bits = BITS_PER_U128 - nr_bits; > + > + btf_int128_shift(print_num, left_shift_bits, right_shift_bits); > + > + return 0; > +} > + > +static int btf_dump_bitfield_data(struct btf_dump *d, > + const struct btf_type *t, > + void *data, > + __u8 bits_offset, > + __u8 nr_bits) > +{ > + __u64 print_num[2] = {}; = {} is unnecessary as you always initialize it anyways? > + > + btf_dump_bitfield_get_data(d, data, bits_offset, nr_bits, print_num); > + btf_dump_int128(d, t, print_num); > + > + return 0; > +} > + > +static int btf_dump_int_bits(struct btf_dump *d, > + const struct btf_type *t, > + void *data, > + __u8 bits_offset) > +{ > + __u8 nr_bits = d->data.state.bitfield_size ?: btf_int_bits(t); > + __u8 total_bits_offset; > + > + /* > + * bits_offset is at most 7. > + * BTF_INT_OFFSET() cannot exceed 128 bits. > + */ > + total_bits_offset = bits_offset + btf_int_offset(t); BTF_INT_OFFSET() is long deprecated, pahole doesn't generate such INTs, many versions of Clang don't generate such int, so I don't think we should bother supporting it. > + data += BITS_ROUNDDOWN_BYTES(total_bits_offset); > + bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); > + return btf_dump_bitfield_data(d, t, data, bits_offset, nr_bits); > +} > + > +static int btf_dump_int_bits_check_zero(struct btf_dump *d, > + const struct btf_type *t, > + void *data, > + __u8 bits_offset) > +{ > + __u64 print_num[2], zero[2] = { }; > + __u8 nr_bits = d->data.state.bitfield_size ?: btf_int_bits(t); > + __u8 total_bits_offset; > + > + total_bits_offset = bits_offset + btf_int_offset(t); > + data += BITS_ROUNDDOWN_BYTES(total_bits_offset); > + bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); > + btf_dump_bitfield_get_data(d, data, bits_offset, nr_bits, > + (__u64 *)&print_num); > + if (memcmp(print_num, zero, sizeof(zero)) == 0) > + return -ENODATA; > + return 0; > +} > + > +static int btf_dump_int_check_zero(struct btf_dump *d, > + const struct btf_type *t, > + void *data, > + __u8 bits_offset) > +{ > + __u8 encoding = btf_int_encoding(t); > + bool sign = encoding & BTF_INT_SIGNED; > + __u8 nr_bits = btf_int_bits(t); > + bool zero = false; > + > + if (bits_offset || btf_int_offset(t) || > + BITS_PER_BYTE_MASKED(nr_bits)) > + return btf_dump_int_bits_check_zero(d, t, data, bits_offset); > + > + switch (nr_bits) { > + case 128: > + zero = sign ? (*(__int128 *)data) == 0 : > + (*(unsigned __int128 *)data) == 0; > + break; > + case 64: > + zero = sign ? (*(__s64 *)data) == 0 : > + (*(__u64 *)data) == 0; > + break; > + case 32: > + zero = sign ? (*(__s32 *)data) == 0 : > + (*(__u32 *)data) == 0; > + break; > + case 16: > + zero = sign ? (*(__s16 *)data) == 0 : > + (*(__u16 *)data) == 0; > + break; > + case 8: > + zero = sign ? (*(__s8 *)data) == 0 : > + (*(__u8 *)data) == 0; for zero checks sign doesn't matter > + break; > + default: > + break; > + } > + if (zero) > + return -ENODATA; > + return 0; > +} > + > +static int btf_dump_int_data(struct btf_dump *d, > + const struct btf_type *t, > + __u32 type_id, > + void *data, > + __u8 bits_offset) > +{ > + __u8 encoding = btf_int_encoding(t); > + bool sign = encoding & BTF_INT_SIGNED; > + __u8 nr_bits = btf_int_bits(t); > + > + if (bits_offset || btf_int_offset(t) || > + BITS_PER_BYTE_MASKED(nr_bits)) > + return btf_dump_int_bits(d, t, data, bits_offset); > + > + switch (nr_bits) { > + case 128: > + btf_dump_int128(d, t, data); > + break; > + case 64: > + if (sign) > + btf_dump_type_values(d, "%lld", *(long long *)data); > + else > + btf_dump_type_values(d, "%llu", > + *(unsigned long long *)data); > + break; > + case 32: > + if (sign) > + btf_dump_type_values(d, "%d", *(__s32 *)data); > + else > + btf_dump_type_values(d, "%u", *(__u32 *)data); > + break; > + case 16: > + if (sign) > + btf_dump_type_values(d, "%d", *(__s16 *)data); > + else > + btf_dump_type_values(d, "%u", *(__u16 *)data); > + break; > + case 8: > + if (d->data.state.array_ischar) { > + /* check for null terminator */ > + if (d->data.state.array_terminated) > + break; > + if (*(char *)data == '\0') { > + d->data.state.array_terminated = 1; > + break; > + } > + if (isprint(*(char *)data)) { > + btf_dump_type_values(d, "'%c'", > + *(char *)data); > + break; > + } > + } > + if (sign) > + btf_dump_type_values(d, "%d", *(__s8 *)data); > + else > + btf_dump_type_values(d, "%u", *(__u8 *)data); > + break; > + default: > + return btf_dump_int_bits(d, t, data, bits_offset); error out in such case? > + } > + return 0; > +} > + > +static int btf_dump_var_data(struct btf_dump *d, > + const struct btf_type *v, > + __u32 id, > + void *data) > +{ > + enum btf_func_linkage linkage = btf_var(v)->linkage; > + const struct btf_type *t; > + const char *l = ""; > + __u32 type_id; > + > + switch (linkage) { > + case BTF_FUNC_STATIC: > + l = "static "; > + break; > + case BTF_FUNC_EXTERN: > + l = "extern "; > + break; > + case BTF_FUNC_GLOBAL: > + default: > + break; > + } > + > + /* format of output here is [linkage] [type] [varname] = (type)value, > + * for example "static int cpu_profile_flip = (int)1" > + */ > + btf_dump_printf(d, "%s", l); > + type_id = v->type; > + t = btf__type_by_id(d->btf, type_id); > + btf_dump_emit_type_name(d, type_id, NULL, 0, false); > + btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); > + return btf_dump_dump_type_data(d, NULL, > + t, type_id, data, 0); > +} > + > +static int btf_dump_array_data(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data) > +{ > + const struct btf_array *array = btf_array(t); > + const struct btf_type *elem_type; > + __u32 i, elem_size = 0, elem_type_id; > + int array_member; > + > + elem_type_id = array->type; > + elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); > + if (!elem_type) { can't really happen in well-formed BTF, I don't think libbpf ever checks this for NULL > + pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", > + elem_type_id); > + return -EINVAL; > + } > + elem_size = btf__resolve_size(d->btf, elem_type_id); this can actually fail and return -Exxx, so I'd check <= 0 case here, otherwise it might get confusing later > + > + if (elem_type && btf_is_int(elem_type)) { > + /* > + * BTF_INT_CHAR encoding never seems to be set for > + * char arrays, so if size is 1 and element is > + * printable as a char, we'll do that. > + */ > + if (elem_size == 1) > + d->data.state.array_ischar = true; > + } > + > + if (!elem_type) > + return 0; already checked above > + > + btf_dump_printf(d, "[%s", > + btf_dump_data_newline(d)); nit: keep on single line, it's not that long > + d->data.state.depth++; > + > + /* may be a multidimemsional array, so store current "is array member" typo: multidimensional > + * status so we can restore it correctly later. > + */ > + array_member = d->data.state.array_member; > + d->data.state.array_member = 1; > + for (i = 0; i < array->nelems && !d->data.state.array_terminated; i++) { > + > + btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, > + data, 0); > + data += elem_size; > + } > + d->data.state.array_member = array_member; > + d->data.state.depth--; > + btf_dump_printf(d, "%s]%s%s", > + btf_dump_data_pfx(d), > + btf_dump_data_delim(d), > + btf_dump_data_newline(d)); > + > + return 0; > +} > + > +static int btf_dump_struct_data(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data) > +{ > + const struct btf_member *member; > + __u32 i; > + int err; > + > + btf_dump_printf(d, "{%s", > + btf_dump_data_newline(d)); > + d->data.state.depth++; > + for (i = 0, member = btf_members(t); > + i < btf_vlen(t); > + i++, member++) { > + const struct btf_type *member_type; > + __u32 bytes_offset, member_offset; > + const char *member_name; > + __u8 bits8_offset; > + > + member_type = btf__type_by_id(d->btf, member->type); > + member_name = btf_name_of(d, member->name_off); > + member_offset = btf_member_bit_offset(t, i); > + bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); > + bits8_offset = BITS_PER_BYTE_MASKED(member_offset); > + > + /* btf_int_bits() does not store member bitfield size; > + * bitfield size needs to be stored here so int display > + * of member can retrieve it. > + */ > + d->data.state.bitfield_size = > + btf_member_bitfield_size(t, i); > + err = btf_dump_dump_type_data(d, > + member_name, > + member_type, > + member->type, > + data + bytes_offset, > + bits8_offset); > + d->data.state.bitfield_size = 0; > + if (err) > + return err; > + } > + d->data.state.depth--; > + btf_dump_printf(d, "%s}%s%s", > + btf_dump_data_pfx(d), > + btf_dump_data_delim(d), > + btf_dump_data_newline(d)); > + return err; > +} > + > +static int btf_dump_ptr_data(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data) > +{ > + btf_dump_type_values(d, "%p", *(void **)data); > + return 0; > +} > + > +static int btf_dump_get_enum_value(const struct btf_type *t, > + void *data, > + __u32 id, > + __s64 *value) > +{ > + switch (t->size) { > + case 8: > + *value = *(__s64 *)data; > + return 0; > + case 4: > + *value = *(__s32 *)data; > + return 0; > + case 2: > + *value = *(__s16 *)data; > + return 0; > + case 1: > + *value = *(__s8 *)data; > + default: > + pr_warn("unexpected size %d for enum, id:[%u]\n", > + t->size, id); > + return -EINVAL; > + } > +} > + > +static int btf_dump_enum_data(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data) > +{ > + const struct btf_enum *e; > + __s64 value; > + int i, err; > + > + err = btf_dump_get_enum_value(t, data, id, &value); > + if (err) > + return err; > + > + for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { > + if (value != e->val) > + continue; > + btf_dump_type_values(d, "%s", > + btf_name_of(d, e->name_off)); > + return 0; > + } > + > + btf_dump_type_values(d, "%d", value); > + return 0; > +} > + > +static int btf_dump_datasec_data(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data) > +{ > + const struct btf_var_secinfo *vsi; > + const struct btf_type *var; > + __u32 i; > + int err; > + > + btf_dump_type_values(d, "SEC(\"%s\") ", > + btf_name_of(d, t->name_off)); > + for (i = 0, vsi = btf_var_secinfos(t); > + i < btf_vlen(t); > + i++, vsi++) { > + var = btf__type_by_id(d->btf, vsi->type); > + err = btf_dump_dump_type_data(d, NULL, var, > + vsi->type, > + data + vsi->offset, > + 0); > + if (err) > + return err; > + btf_dump_printf(d, ";"); > + } > + return 0; > +} > + > +static int btf_dump_type_data_check_overflow(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data, > + __u8 bits_offset) > +{ > + __s64 size; > + > + /* Only do overflow checking for base types; we do not want to > + * avoid showing part of a struct, union or array, even if we > + * do not have enough data to show the full object. By > + * restricting overflow checking to base types we can ensure > + * that partial display succeeds, while avoiding overflowing > + * and using bogus data for display. > + */ > + t = skip_mods_and_typedefs(d->btf, id, NULL); > + if (!t) { > + pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", > + id); > + return -EINVAL; > + } > + > + switch (BTF_INFO_KIND(t->info)) { > + case BTF_KIND_INT: > + case BTF_KIND_PTR: > + case BTF_KIND_ENUM: > + size = btf__resolve_size(d->btf, id); > + if (size < 0) { > + pr_warn("unexpected size [%llu] for id [%u]\n", > + size, id); > + return -EINVAL; > + } > + if (data + (bits_offset >> 3) + size > d->data.data_end) bits_offset / 8... and considering you have a whole dedicated BITS_PER_BYTE (btw, why?.. are we expecting it to ever change?), it's surprising to see bit shifts instead of division > + return -E2BIG; > + return 0; > + default: > + return 0; > + } > +} > + > +static int btf_dump_type_data_check_zero(struct btf_dump *d, > + const struct btf_type *t, > + __u32 id, > + void *data, > + __u8 bits_offset) > +{ > + __s64 value; > + int i, err; > + > + /* toplevel exceptions; we show zero values if > + * - we ask for them (emit_zeros) > + * - if we are at top-level so we see "struct empty { }" > + * - or if we are an array member and the array is non-empty and > + * not a char array; we don't want to be in a situation where we > + * have an integer array 0, 1, 0, 1 and only show non-zero values. > + * If the array contains zeroes only, or is a char array starting > + * with a '\0', the array-level check_zero() will prevent showing it; > + * we are concerned with determining zero value at the array member > + * level here. > + */ > + if (d->data.emit_zeroes || d->data.state.depth == 0 || > + (d->data.state.array_member && !d->data.state.array_ischar)) > + return 0; > + > + t = skip_mods_and_typedefs(d->btf, id, NULL); > + if (!t) { don't check, if anything btf_dump_type_data_check_overflow() already validated that it's ok > + pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", > + id); > + return -EINVAL; > + } > + > + > + switch (BTF_INFO_KIND(t->info)) { > + case BTF_KIND_INT: > + if (d->data.state.bitfield_size) > + return btf_dump_int_bits_check_zero(d, t, data, > + bits_offset); > + return btf_dump_int_check_zero(d, t, data, bits_offset); > + case BTF_KIND_PTR: > + if (*((void **)data) == NULL) > + return -ENODATA; > + return 0; > + case BTF_KIND_ARRAY: { > + const struct btf_array *array = btf_array(t); > + const struct btf_type *elem_type; > + __u32 elem_type_id, elem_size; > + bool ischar; > + > + elem_type_id = array->type; > + elem_size = btf__resolve_size(d->btf, elem_type_id); > + elem_type = btf__type_by_id(d->btf, elem_type_id); > + > + ischar = btf_is_int(elem_type) && elem_size == 1; > + > + /* check all elements; if _any_ element is nonzero, all > + * of array is displayed. We make an exception however > + * for char arrays where the first element is 0; these > + * are considered zeroed also, even if later elements are > + * non-zero because the string is terminated. > + */ > + for (i = 0; i < array->nelems; i++) { > + if (i == 0 && ischar && *(char *)data == 0) > + return -ENODATA; > + err = btf_dump_type_data_check_zero(d, elem_type, > + elem_type_id, > + data + > + (i * elem_size), > + bits_offset); > + if (err != -ENODATA) > + return err; > + } > + return -ENODATA; > + } > + case BTF_KIND_STRUCT: > + case BTF_KIND_UNION: { > + const struct btf_member *member; > + > + /* if any struct/union member is non-zero, the struct/union > + * is considered non-zero and dumped. > + */ > + for (i = 0, member = btf_members(t); > + i < btf_vlen(t); > + i++, member++) { in a lot of other places in libbpf we use more succinct names and this pattern n = btf_vlen(t); m = btf_members(t); for (i = 0; i < n; i++, m++) { it's nice, short, and familiar in libbpf code base > + const struct btf_type *member_type; > + __u32 bytes_offset, member_offset; > + __u8 bits8_offset; > + > + member_type = btf__type_by_id(d->btf, member->type); > + member_offset = btf_member_bit_offset(t, i); > + bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); > + bits8_offset = BITS_PER_BYTE_MASKED(member_offset); > + > + /* btf_int_bits() does not store member bitfield size; > + * bitfield size needs to be stored here so int display > + * of member can retrieve it. > + */ > + d->data.state.bitfield_size = > + btf_member_bitfield_size(t, i); > + > + err = btf_dump_type_data_check_zero(d, member_type, > + member->type, > + data + bytes_offset, > + bits8_offset); > + d->data.state.bitfield_size = 0; > + if (err != ENODATA) > + return err; > + } > + return -ENODATA; > + } > + case BTF_KIND_ENUM: > + if (btf_dump_get_enum_value(t, data, id, &value)) > + return 0; > + if (value == 0) > + return -ENODATA; > + return 0; > + default: > + return 0; > + } > +} > + > +static int btf_dump_dump_type_data(struct btf_dump *d, > + const char *fname, > + const struct btf_type *t, > + __u32 id, > + void *data, > + __u8 bits_offset) > +{ > + int err; > + > + err = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); > + if (err) > + return err; > + err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset); > + if (err) { > + /* zeroed data is expected and not an error, so simply skip > + * dumping such data. Record other errors however. > + */ > + if (err == -ENODATA) > + return 0; > + return err; > + } > + btf_dump_printf(d, "%s", btf_dump_data_pfx(d)); > + if (!d->data.skip_names) > + btf_dump_emit_type_name(d, id, fname, 0, true); > + > + t = skip_mods_and_typedefs(d->btf, id, NULL); > + if (!t) { > + pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", > + id); > + return -EINVAL; > + } > + > + switch (BTF_INFO_KIND(t->info)) { > + case BTF_KIND_UNKN: > + case BTF_KIND_FWD: > + case BTF_KIND_FUNC: > + case BTF_KIND_FUNC_PROTO: > + return btf_dump_df_data(d, t, id, data); > + case BTF_KIND_INT: > + if (d->data.state.bitfield_size) btw, enum can be part of bitfields as well > + return btf_dump_bitfield_data(d, t, data, > + bits_offset, > + d->data.state.bitfield_size); > + return btf_dump_int_data(d, t, id, data, bits_offset); > + case BTF_KIND_PTR: > + return btf_dump_ptr_data(d, t, id, data); > + case BTF_KIND_ARRAY: > + return btf_dump_array_data(d, t, id, data); > + case BTF_KIND_STRUCT: > + case BTF_KIND_UNION: > + return btf_dump_struct_data(d, t, id, data); > + case BTF_KIND_ENUM: > + return btf_dump_enum_data(d, t, id, data); > + case BTF_KIND_VAR: > + return btf_dump_var_data(d, t, id, data); > + case BTF_KIND_DATASEC: > + return btf_dump_datasec_data(d, t, id, data); > + default: since last time we also added BTF_KIND_FLOAT > + pr_warn("unexpected kind [%u] for id [%u]\n", > + BTF_INFO_KIND(t->info), id); > + return -EINVAL; > + } > +} > + > +int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, > + void *data, size_t byte_sz, > + const struct btf_dump_type_data_opts *opts) > +{ > + const struct btf_type *t; > + int err; > + > + if (!OPTS_VALID(opts, btf_dump_type_data_opts)) > + return -EINVAL; > + > + t = btf__type_by_id(d->btf, id); > + if (!t) > + return -ENOENT; public APIs should use libbpf_err() to ensure errno is set properly, see my recent patch set. This should be return libbpf_err(-ENOENT); > + > + d->data.data_end = data + byte_sz; > + d->data.indent_lvl = OPTS_GET(opts, indent_level, 0); > + d->data.compact = OPTS_GET(opts, compact, false); > + d->data.skip_names = OPTS_GET(opts, skip_names, false); > + d->data.emit_zeroes = OPTS_GET(opts, emit_zeroes, false); > + memset(&d->data.state, 0, sizeof(d->data.state)); > + > + err = btf_dump_dump_type_data(d, NULL, t, id, data, 0); > + > + /* We reported all the data; return size of data we reported. */ > + if (err == 0) > + err = btf__resolve_size(d->btf, id); hm.. why can't btf_dump_dump_type_data() return the consumed amount of bytes? > + > + memset(&d->data, 0, sizeof(d->data)); > + > + return err; > +} > diff --git a/tools/lib/bpf/libbpf.map b/tools/lib/bpf/libbpf.map > index 0229e01..76cfac6 100644 > --- a/tools/lib/bpf/libbpf.map > +++ b/tools/lib/bpf/libbpf.map > @@ -370,3 +370,8 @@ LIBBPF_0.4.0 { > bpf_tc_hook_destroy; > bpf_tc_query; > } LIBBPF_0.3.0; > + > +LIBBPF_0.5.0 { > + global: > + btf_dump__dump_type_data; > +} LIBBPF_0.4.0; > -- > 1.8.3.1 >