Re: [PATCH v2 bpf-next 11/17] libbpf: add linker extern resolution support for functions and global variables

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 





On 4/22/21 3:12 PM, Andrii Nakryiko wrote:
On Thu, Apr 22, 2021 at 2:27 PM Yonghong Song <yhs@xxxxxx> wrote:



On 4/16/21 1:23 PM, Andrii Nakryiko wrote:
Add BPF static linker logic to resolve extern variables and functions across
multiple linked together BPF object files.

For that, linker maintains a separate list of struct glob_sym structures,
which keeps track of few pieces of metadata (is it extern or resolved global,
is it a weak symbol, which ELF section it belongs to, etc) and ties together
BTF type info and ELF symbol information and keeps them in sync.

With adding support for extern variables/funcs, it's now possible for some
sections to contain both extern and non-extern definitions. This means that
some sections may start out as ephemeral (if only externs are present and thus
there is not corresponding ELF section), but will be "upgraded" to actual ELF
section as symbols are resolved or new non-extern definitions are appended.

Additional care is taken to not duplicate extern entries in sections like
.kconfig and .ksyms.

Given libbpf requires BTF type to always be present for .kconfig/.ksym
externs, linker extends this requirement to all the externs, even those that
are supposed to be resolved during static linking and which won't be visible
to libbpf. With BTF information always present, static linker will check not
just ELF symbol matches, but entire BTF type signature match as well. That
logic is stricter that BPF CO-RE checks. It probably should be re-used by
.ksym resolution logic in libbpf as well, but that's left for follow up
patches.

To make it unnecessary to rewrite ELF symbols and minimize BTF type
rewriting/removal, ELF symbols that correspond to externs initially will be
updated in place once they are resolved. Similarly for BTF type info, VAR/FUNC
and var_secinfo's (sec_vars in struct bpf_linker) are staying stable, but
types they point to might get replaced when extern is resolved. This might
leave some left-over types (even though we try to minimize this for common
cases of having extern funcs with not argument names vs concrete function with
names properly specified). That can be addresses later with a generic BTF
garbage collection. That's left for a follow up as well.

Given BTF type appending phase is separate from ELF symbol
appending/resolution, special struct glob_sym->underlying_btf_id variable is
used to communicate resolution and rewrite decisions. 0 means
underlying_btf_id needs to be appended (it's not yet in final linker->btf), <0
values are used for temporary storage of source BTF type ID (not yet
rewritten), so -glob_sym->underlying_btf_id is BTF type id in obj-btf. But by
the end of linker_append_btf() phase, that underlying_btf_id will be remapped
and will always be > 0. This is the uglies part of the whole process, but
keeps the other parts much simpler due to stability of sec_var and VAR/FUNC
types, as well as ELF symbol, so please keep that in mind while reviewing.

This is indeed complicated. I has some comments below. Please check
whether my understanding is correct or not.


BTF-defined maps require some extra custom logic and is addressed separate in
the next patch, so that to keep this one smaller and easier to review.

Signed-off-by: Andrii Nakryiko <andrii@xxxxxxxxxx>
---
   tools/lib/bpf/linker.c | 844 ++++++++++++++++++++++++++++++++++++++---
   1 file changed, 785 insertions(+), 59 deletions(-)

diff --git a/tools/lib/bpf/linker.c b/tools/lib/bpf/linker.c
index d5dc1d401f57..67d2d06e3cb6 100644
--- a/tools/lib/bpf/linker.c
+++ b/tools/lib/bpf/linker.c
@@ -22,6 +22,8 @@
   #include "libbpf_internal.h"
   #include "strset.h"

+#define BTF_EXTERN_SEC ".extern"
+
   struct src_sec {
       const char *sec_name;
       /* positional (not necessarily ELF) index in an array of sections */
@@ -74,11 +76,36 @@ struct btf_ext_sec_data {
       void *recs;
   };

+struct glob_sym {
+     /* ELF symbol index */
+     int sym_idx;
+     /* associated section id for .ksyms, .kconfig, etc, but not .extern */
+     int sec_id;
+     /* extern name offset in STRTAB */
+     int name_off;
+     /* optional associated BTF type ID */
+     int btf_id;
+     /* BTF type ID to which VAR/FUNC type is pointing to; used for
+      * rewriting types when extern VAR/FUNC is resolved to a concrete
+      * definition
+      */
+     int underlying_btf_id;
+     /* sec_var index in the corresponding dst_sec, if exists */
+     int var_idx;
+
+     /* extern or resolved/global symbol */
+     bool is_extern;
+     /* weak or strong symbol, never goes back from strong to weak */
+     bool is_weak;
+};
+
   struct dst_sec {
       char *sec_name;
       /* positional (not necessarily ELF) index in an array of sections */
       int id;

+     bool ephemeral;
+
       /* ELF info */
       size_t sec_idx;
       Elf_Scn *scn;
@@ -120,6 +147,10 @@ struct bpf_linker {

       struct btf *btf;
       struct btf_ext *btf_ext;
+
+     /* global (including extern) ELF symbols */
+     int glob_sym_cnt;
+     struct glob_sym *glob_syms;
   };

[...]
+
+static bool glob_sym_btf_matches(const char *sym_name, bool exact,
+                              const struct btf *btf1, __u32 id1,
+                              const struct btf *btf2, __u32 id2)
+{
+     const struct btf_type *t1, *t2;
+     bool is_static1, is_static2;
+     const char *n1, *n2;
+     int i, n;
+
+recur:
+     n1 = n2 = NULL;
+     t1 = skip_mods_and_typedefs(btf1, id1, &id1);
+     t2 = skip_mods_and_typedefs(btf2, id2, &id2);
+
[...]
+
+     case BTF_KIND_TYPEDEF:
+     case BTF_KIND_VOLATILE:
+     case BTF_KIND_CONST:
+     case BTF_KIND_RESTRICT:

We already did skip_mods_and_typedefs() before. Unless something serious
wrong, we should not hit the above four types. So I think we can skip
them here.

This is the way of documenting explicitly that I'm aware of those
kinds and they shouldn't be encountered. Otherwise one might wonder if
we just forgot to handle them.

maybe add a short comment like "shouldn't happen due to skip_mods_and_typedefs(), added here for completeness"?



+     case BTF_KIND_DATASEC:
+     default:
+             pr_warn("global '%s': unsupported BTF kind %s\n",
+                     sym_name, btf_kind_str(t1));
+             return false;
+     }
+}
+
+static bool glob_syms_match(const char *sym_name,
+                         struct bpf_linker *linker, struct glob_sym *glob_sym,
+                         struct src_obj *obj, Elf64_Sym *sym, size_t sym_idx, int btf_id)
+{
+     const struct btf_type *src_t;
+
+     /* if we are dealing with externs, BTF types describing both global
+      * and extern VARs/FUNCs should be completely present in all files
+      */
+     if (!glob_sym->btf_id || !btf_id) {
+             pr_warn("BTF info is missing for global symbol '%s'\n", sym_name);
+             return false;
+     }
+
+     src_t = btf__type_by_id(obj->btf, btf_id);
+     if (!btf_is_var(src_t) && !btf_is_func(src_t)) {
+             pr_warn("only extern variables and functions are supported, but got '%s' for '%s'\n",
+                     btf_kind_str(src_t), sym_name);
+             return false;
+     }
+
+     if (!glob_sym_btf_matches(sym_name, true /*exact*/,
+                               linker->btf, glob_sym->btf_id, obj->btf, btf_id))
+             return false;
+
+     return true;
+}
+
[...]
+
+static void sym_update_visibility(Elf64_Sym *sym, int sym_vis)
+{
+     /* libelf doesn't provide setters for ST_VISIBILITY,
+      * but it is stored in the lower 2 bits of st_other
+      */
+     sym->st_other &= 0x03;
+     sym->st_other |= sym_vis;
+}
+
+static int linker_append_elf_sym(struct bpf_linker *linker, struct src_obj *obj,
+                              Elf64_Sym *sym, const char *sym_name, int src_sym_idx)
+{
+     struct src_sec *src_sec = NULL;
+     struct dst_sec *dst_sec = NULL;
+     struct glob_sym *glob_sym = NULL;
+     int name_off, sym_type, sym_bind, sym_vis, err;
+     int btf_sec_id = 0, btf_id = 0;
+     size_t dst_sym_idx;
+     Elf64_Sym *dst_sym;
+     bool sym_is_extern;
+
+     sym_type = ELF64_ST_TYPE(sym->st_info);
+     sym_bind = ELF64_ST_BIND(sym->st_info);
+     sym_vis = ELF64_ST_VISIBILITY(sym->st_other);
+     sym_is_extern = sym->st_shndx == SHN_UNDEF;
+
+     if (sym_is_extern) {
+             if (!obj->btf) {
+                     pr_warn("externs without BTF info are not supported\n");
+                     return -ENOTSUP;
+             }
+     } else if (sym->st_shndx < SHN_LORESERVE) {

So what happens if sym->st_shndx >= SHN_LORESERVE. Maybe return failures
here? In general, bpf program shouldn't hit sym->st_shndx >= SHN_LORESERVE.

There is at least SHN_ABS (0xfff1), which is an informational STT_FILE
symbol. libbpf doesn't error out on such special symbols, and linker
will just pass-through them and append to the final object file.

Okay, I see. Never paid attention to it.



+             src_sec = &obj->secs[sym->st_shndx];
+             if (src_sec->skipped)
+                     return 0;
+             dst_sec = &linker->secs[src_sec->dst_id];
+
+             /* allow only one STT_SECTION symbol per section */
+             if (sym_type == STT_SECTION && dst_sec->sec_sym_idx) {
+                     obj->sym_map[src_sym_idx] = dst_sec->sec_sym_idx;
+                     return 0;
+             }
+     }
+
+     if (sym_bind == STB_LOCAL)
+             goto add_sym;
+
+     /* find matching BTF info */
+     err = find_glob_sym_btf(obj, sym, sym_name, &btf_sec_id, &btf_id);
+     if (err)
+             return err;
+
+     if (sym_is_extern && btf_sec_id) {
+             const char *sec_name = NULL;
+             const struct btf_type *t;
+
+             t = btf__type_by_id(obj->btf, btf_sec_id);
+             sec_name = btf__str_by_offset(obj->btf, t->name_off);
+
+             /* Clang puts unannotated extern vars into
+              * '.extern' BTF DATASEC. Treat them the same
+              * as unannotated extern funcs (which are
+              * currently not put into any DATASECs).
+              * Those don't have associated src_sec/dst_sec.
+              */
+             if (strcmp(sec_name, BTF_EXTERN_SEC) != 0) {
+                     src_sec = find_src_sec_by_name(obj, sec_name);
+                     if (!src_sec) {
+                             pr_warn("failed to find matching ELF sec '%s'\n", sec_name);
+                             return -ENOENT;
+                     }
+                     dst_sec = &linker->secs[src_sec->dst_id];
+             }
+     }
+
+     glob_sym = find_glob_sym(linker, sym_name);
+     if (glob_sym) {
+             /* Preventively resolve to existing symbol. This is
+              * needed for further relocation symbol remapping in
+              * the next step of linking.
+              */
+             obj->sym_map[src_sym_idx] = glob_sym->sym_idx;
+
+             /* If both symbols are non-externs, at least one of
+              * them has to be STB_WEAK, otherwise they are in
+              * a conflict with each other.
+              */
+             if (!sym_is_extern && !glob_sym->is_extern
+                 && !glob_sym->is_weak && sym_bind != STB_WEAK) {
+                     pr_warn("conflicting non-weak symbol #%d (%s) definition in '%s'\n",
+                             src_sym_idx, sym_name, obj->filename);
+                     return -EINVAL;
               }

+             if (!glob_syms_match(sym_name, linker, glob_sym, obj, sym, src_sym_idx, btf_id))
+                     return -EINVAL;
+
+             dst_sym = get_sym_by_idx(linker, glob_sym->sym_idx);
+
+             /* If new symbol is strong, then force dst_sym to be strong as
+              * well; this way a mix of weak and non-weak extern
+              * definitions will end up being strong.
+              */
+             if (sym_bind == STB_GLOBAL) {
+                     /* We still need to preserve type (NOTYPE or
+                      * OBJECT/FUNC, depending on whether the symbol is
+                      * extern or not)
+                      */
+                     sym_update_bind(dst_sym, STB_GLOBAL);
+                     glob_sym->is_weak = false;
+             }
+
+             /* Non-default visibility is "contaminating", with stricter
+              * visibility overwriting more permissive ones, even if more
+              * permissive visibility comes from just an extern definition
+              */
+             if (sym_vis > ELF64_ST_VISIBILITY(dst_sym->st_other))
+                     sym_update_visibility(dst_sym, sym_vis);

For visibility, maybe we can just handle DEFAULT and HIDDEN, and others
are not supported? DEFAULT + DEFAULT/HIDDEN => DEFAULT, HIDDEN + HIDDEN
=> HIDDEN?


Sure, we can restrict this to STV_DEFAULT and STV_HIDDEN for now.

+
+             /* If the new symbol is extern, then regardless if
+              * existing symbol is extern or resolved global, just
+              * keep the existing one untouched.
+              */
+             if (sym_is_extern)
+                     return 0;
+
+             /* If existing symbol is a strong resolved symbol, bail out,
+              * because we lost resolution battle have nothing to
+              * contribute. We already checked abover that there is no
+              * strong-strong conflict. We also already tightened binding
+              * and visibility, so nothing else to contribute at that point.
+              */
+             if (!glob_sym->is_extern && sym_bind == STB_WEAK)
+                     return 0;
+
+             /* At this point, new symbol is strong non-extern,
+              * so overwrite glob_sym with new symbol information.
+              * Preserve binding and visibility.
+              */
+             sym_update_type(dst_sym, sym_type);
+             dst_sym->st_shndx = dst_sec->sec_idx;
+             dst_sym->st_value = src_sec->dst_off + sym->st_value;
+             dst_sym->st_size = sym->st_size;
+
+             /* see comment below about dst_sec->id vs dst_sec->sec_idx */
+             glob_sym->sec_id = dst_sec->id;
+             glob_sym->is_extern = false;
+             /* never relax strong to weak binding */
+             if (sym_bind == STB_GLOBAL)
+                     glob_sym->is_weak = false;

In the above, we already set glob_sym->is_weak to false if STB_GLOBAL.

yep, you are right, this is unnecessary, I'll remove


+
+             if (complete_extern_btf_info(linker->btf, glob_sym->btf_id,
+                                          obj->btf, btf_id))
+                     return -EINVAL;
+
+             /* request updating VAR's/FUNC's underlying BTF type when appending BTF type */
+             glob_sym->underlying_btf_id = 0;
+
+             obj->sym_map[src_sym_idx] = glob_sym->sym_idx;
+             return 0;
+     }
+
+add_sym:
+     name_off = strset__add_str(linker->strtab_strs, sym_name);
+     if (name_off < 0)
+             return name_off;
+
+     dst_sym = add_new_sym(linker, &dst_sym_idx);
+     if (!dst_sym)
+             return -ENOMEM;
+
+     dst_sym->st_name = name_off;
+     dst_sym->st_info = sym->st_info;
+     dst_sym->st_other = sym->st_other;
+     dst_sym->st_shndx = dst_sec ? dst_sec->sec_idx : sym->st_shndx;
+     dst_sym->st_value = (src_sec ? src_sec->dst_off : 0) + sym->st_value;
+     dst_sym->st_size = sym->st_size;
+
+     obj->sym_map[src_sym_idx] = dst_sym_idx;
+
+     if (sym_type == STT_SECTION && dst_sym) {
+             dst_sec->sec_sym_idx = dst_sym_idx;
+             dst_sym->st_value = 0;
+     }
+
+     if (sym_bind != STB_LOCAL) {
+             glob_sym = add_glob_sym(linker);
+             if (!glob_sym)
+                     return -ENOMEM;
+
+             glob_sym->sym_idx = dst_sym_idx;
+             /* we use dst_sec->id (and not dst_sec->sec_idx), because
+              * ephemeral sections (.kconfig, .ksyms, etc) don't have
+              * sec_idx (as they don't have corresponding ELF section), but
+              * still have id. .extern doesn't have even ephemeral section
+              * associated with it, so dst_sec->id == dst_sec->sec_idx == 0.
+              */
+             glob_sym->sec_id = dst_sec ? dst_sec->id : 0;
+             glob_sym->name_off = name_off;
+             /* we will fill btf_id in during BTF merging step */
+             glob_sym->btf_id = 0;
+             glob_sym->is_extern = sym_is_extern;
+             glob_sym->is_weak = sym_bind == STB_WEAK;
       }

       return 0;
@@ -1256,7 +1887,7 @@ static int linker_append_elf_relos(struct bpf_linker *linker, struct src_obj *ob
               dst_sec->shdr->sh_info = dst_linked_sec->sec_idx;

               src_sec->dst_id = dst_sec->id;
-             err = extend_sec(dst_sec, src_sec);
+             err = extend_sec(linker, dst_sec, src_sec);
               if (err)
                       return err;

@@ -1309,21 +1940,6 @@ static int linker_append_elf_relos(struct bpf_linker *linker, struct src_obj *ob
       return 0;
   }

[...]
@@ -1442,6 +2078,7 @@ static int linker_append_btf(struct bpf_linker *linker, struct src_obj *obj)
   {
       const struct btf_type *t;
       int i, j, n, start_id, id;
+     const char *name;

       if (!obj->btf)
               return 0;
@@ -1454,12 +2091,40 @@ static int linker_append_btf(struct bpf_linker *linker, struct src_obj *obj)
               return -ENOMEM;

       for (i = 1; i <= n; i++) {
+             struct glob_sym *glob_sym = NULL;
+
               t = btf__type_by_id(obj->btf, i);

               /* DATASECs are handled specially below */
               if (btf_kind(t) == BTF_KIND_DATASEC)
                       continue;

+             if (btf_is_non_static(t)) {
+                     /* there should be glob_sym already */
+                     name = btf__str_by_offset(obj->btf, t->name_off);
+                     glob_sym = find_glob_sym(linker, name);
+
+                     /* VARs without corresponding glob_sym are those that
+                      * belong to skipped/deduplicated sections (i.e.,
+                      * license and version), so just skip them
+                      */
+                     if (!glob_sym)
+                             continue;
+
+                     if (glob_sym->underlying_btf_id == 0)
+                             glob_sym->underlying_btf_id = -t->type;

Is this needed? If glob_sym->btf_id is not NULL, then
glob_sym->underlying_btf_id has been set by the previous object.
If it is NULL, it will set probably after this
if (btf_is_non_static(t)) { ...}, is this right?

I think it's still needed. Here's the scenario.

1. Obj file A contains extern symbol X. We create corresponding
glob_sym (with is_extern=true), and store btf_id to point to
BTF_KIND_VAR, and btf_underlying_id to point to the type that
BTF_KIND_VAR points to.

2. Obj file B contains non-extern symbol X. At this point
linker_append_elf_sym() will update glob_sym to is_extern = false, it
will keep btf_id to re-use already appended BTF_KIND_VAR, but it will
zero-out underlying_btf_id, because for externs type could be
incomplete (e.g. for functions it won't contain function argument
names, for maps it could differ even more drastically later). So then
we get here, we see that glob_sym->underlying_btf_id is zero, so needs
updating. We store it as -Y, because Y is BTF type ID in obj->btf, not
in linker->btf (yet). Then the if (glob_sym->btf_id) below sees that
glob_sym->btf_id is already set, so we just keep using already
appended BTF_KIND_VAR (we already set its linkage to
BTF_VAR_GLOBAL_ALLOCATED in complete_extern_btf_info(), called from
linker_append_elf_sym(). So we'll skip appending another BTF_KIND_VAR.
But we do want to point existing BTF_KIND_VAR to a new type that
corresponds to ID -Y.

Thanks for explanation, I missed the code in
      /* request updating VAR's/FUNC's underlying BTF type when
 appending BTF type */
      glob_sym->underlying_btf_id = 0;

 in linker_append_elf_sym().

Maybe add a comment above the code with something like
 underlying_btf_id may have been reset to 0 due to the presence of
 a strong global variable.
?



+
+                     /* globals from previous object files that match our
+                      * VAR/FUNC already have a corresponding associated
+                      * BTF type, so just make sure to use it
+                      */
+                     if (glob_sym->btf_id) {
+                             /* reuse existing BTF type for global var/func */
+                             obj->btf_type_map[i] = glob_sym->btf_id;
+                             continue;
+                     }
+             }
+
               id = btf__add_type(linker->btf, obj->btf, t);
               if (id < 0) {
                       pr_warn("failed to append BTF type #%d from file '%s'\n", i, obj->filename);
@@ -1467,6 +2132,12 @@ static int linker_append_btf(struct bpf_linker *linker, struct src_obj *obj)
               }

               obj->btf_type_map[i] = id;
+
+             /* record just appended BTF type for var/func */
+             if (glob_sym) {
+                     glob_sym->btf_id = id;
+                     glob_sym->underlying_btf_id = -t->type;
+             }
       }

       /* remap all the types except DATASECs */
@@ -1478,6 +2149,22 @@ static int linker_append_btf(struct bpf_linker *linker, struct src_obj *obj)
                       return -EINVAL;
       }

+     /* Rewrite VAR/FUNC underlying types (i.e., FUNC's FUNC_PROTO and VAR's
+      * actual type), if necessary
+      */
+     for (i = 0; i < linker->glob_sym_cnt; i++) {
+             struct glob_sym *glob_sym = &linker->glob_syms[i];
+             struct btf_type *glob_t;
+
+             if (glob_sym->underlying_btf_id >= 0)
+                     continue;
+
+             glob_sym->underlying_btf_id = obj->btf_type_map[-glob_sym->underlying_btf_id];

After this point, any new *extern* variables will hit the below in the
previous code:

Right, but we want to hit this for existing glob_syms that went from
extern to non-extern or from weak to non-weak. See

     /* request updating VAR's/FUNC's underlying BTF type when
appending BTF type */
     glob_sym->underlying_btf_id = 0;

in linker_append_elf_sym().

And we'll use that even more extensively when extending __weak and
extern map definitions later.

  > +                    if (glob_sym->btf_id) {
  > +                            /* reuse existing BTF type for global var/func */
  > +                            obj->btf_type_map[i] = glob_sym->btf_id;
  > +                            continue;
  > +                    }

+
+             glob_t = btf_type_by_id(linker->btf, glob_sym->btf_id);
+             glob_t->type = glob_sym->underlying_btf_id;
+     }
+
       /* append DATASEC info */
       for (i = 1; i < obj->sec_cnt; i++) {
               struct src_sec *src_sec;
@@ -1505,6 +2192,42 @@ static int linker_append_btf(struct bpf_linker *linker, struct src_obj *obj)
[...]



[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux