On 12/3/20 8:02 AM, Brendan Jackman wrote:
Status of the patches ===================== Thanks for the reviews! Differences from v2->v3 [1]: * More minor fixes and naming/comment changes * Dropped atomic subtract: compilers can implement this by preceding an atomic add with a NEG instruction (which is what the x86 JIT did under the hood anyway). * Dropped the use of -mcpu=v4 in the Clang BPF command-line; there is no longer an architecture version bump. Instead a feature test is added to Kbuild - it builds a source file to check if Clang supports BPF atomics. * Fixed the prog_test so it no longer breaks test_progs-no_alu32. This requires some ifdef acrobatics to avoid complicating the prog_tests model where the same userspace code exercises both the normal and no_alu32 BPF test objects, using the same skeleton header. Differences from v1->v2 [1]: * Fixed mistakes in the netronome driver * Addd sub, add, or, xor operations * The above led to some refactors to keep things readable. (Maybe I should have just waited until I'd implemented these before starting the review...) * Replaced BPF_[CMP]SET | BPF_FETCH with just BPF_[CMP]XCHG, which include the BPF_FETCH flag * Added a bit of documentation. Suggestions welcome for more places to dump this info... The prog_test that's added depends on Clang/LLVM features added by Yonghong in https://reviews.llvm.org/D72184
Just let you know that the above patch has been merged into llvm-project trunk, so you do not manually apply it any more.
This only includes a JIT implementation for x86_64 - I don't plan to implement JIT support myself for other architectures. Operations ========== This patchset adds atomic operations to the eBPF instruction set. The use-case that motivated this work was a trivial and efficient way to generate globally-unique cookies in BPF progs, but I think it's obvious that these features are pretty widely applicable. The instructions that are added here can be summarised with this list of kernel operations: * atomic[64]_[fetch_]add * atomic[64]_[fetch_]and * atomic[64]_[fetch_]or * atomic[64]_xchg * atomic[64]_cmpxchg The following are left out of scope for this effort: * 16 and 8 bit operations * Explicit memory barriers Encoding ======== I originally planned to add new values for bpf_insn.opcode. This was rather unpleasant: the opcode space has holes in it but no entire instruction classes[2]. Yonghong Song had a better idea: use the immediate field of the existing STX XADD instruction to encode the operation. This works nicely, without breaking existing programs, because the immediate field is currently reserved-must-be-zero, and extra-nicely because BPF_ADD happens to be zero. Note that this of course makes immediate-source atomic operations impossible. It's hard to imagine a measurable speedup from such instructions, and if it existed it would certainly not benefit x86, which has no support for them. The BPF_OP opcode fields are re-used in the immediate, and an additional flag BPF_FETCH is used to mark instructions that should fetch a pre-modification value from memory. So, BPF_XADD is now called BPF_ATOMIC (the old name is kept to avoid breaking userspace builds), and where we previously had .imm = 0, we now have .imm = BPF_ADD (which is 0). Operands ======== Reg-source eBPF instructions only have two operands, while these atomic operations have up to four. To avoid needing to encode additional operands, then: - One of the input registers is re-used as an output register (e.g. atomic_fetch_add both reads from and writes to the source register). - Where necessary (i.e. for cmpxchg) , R0 is "hard-coded" as one of the operands. This approach also allows the new eBPF instructions to map directly to single x86 instructions. [1] Previous patchset: https://lore.kernel.org/bpf/20201123173202.1335708-1-jackmanb@xxxxxxxxxx/ [2] Visualisation of eBPF opcode space: https://gist.github.com/bjackman/00fdad2d5dfff601c1918bc29b16e778
[...]