Roman Gushchin <guro@xxxxxx> writes: > On Thu, Nov 26, 2020 at 01:21:41AM +0100, Daniel Borkmann wrote: >> On 11/25/20 4:00 AM, Roman Gushchin wrote: >> > In the absolute majority of cases if a process is making a kernel >> > allocation, it's memory cgroup is getting charged. >> > >> > Bpf maps can be updated from an interrupt context and in such >> > case there is no process which can be charged. It makes the memory >> > accounting of bpf maps non-trivial. >> > >> > Fortunately, after commit 4127c6504f25 ("mm: kmem: enable kernel >> > memcg accounting from interrupt contexts") and b87d8cefe43c >> > ("mm, memcg: rework remote charging API to support nesting") >> > it's finally possible. >> > >> > To do it, a pointer to the memory cgroup of the process, which created >> > the map, is saved, and this cgroup can be charged for all allocations >> > made from an interrupt context. This commit introduces 2 helpers: >> > bpf_map_kmalloc_node() and bpf_map_alloc_percpu(). They can be used in >> > the bpf code for accounted memory allocations, both in the process and >> > interrupt contexts. In the interrupt context they're using the saved >> > memory cgroup, otherwise the current cgroup is getting charged. >> > >> > Signed-off-by: Roman Gushchin <guro@xxxxxx> >> >> Thanks for updating the cover letter; replying in this series instead >> on one more item that came to mind: >> >> [...] >> > diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c >> > index f3fe9f53f93c..4154c616788c 100644 >> > --- a/kernel/bpf/syscall.c >> > +++ b/kernel/bpf/syscall.c >> > @@ -31,6 +31,8 @@ >> > #include <linux/poll.h> >> > #include <linux/bpf-netns.h> >> > #include <linux/rcupdate_trace.h> >> > +#include <linux/memcontrol.h> >> > +#include <linux/sched/mm.h> >> > #define IS_FD_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY || \ >> > (map)->map_type == BPF_MAP_TYPE_CGROUP_ARRAY || \ >> > @@ -456,6 +458,77 @@ void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock) >> > __release(&map_idr_lock); >> > } >> > +#ifdef CONFIG_MEMCG_KMEM >> > +static void bpf_map_save_memcg(struct bpf_map *map) >> > +{ >> > + map->memcg = get_mem_cgroup_from_mm(current->mm); >> > +} >> > + >> > +static void bpf_map_release_memcg(struct bpf_map *map) >> > +{ >> > + mem_cgroup_put(map->memcg); >> > +} >> > + >> > +void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, >> > + int node) >> > +{ >> > + struct mem_cgroup *old_memcg; >> > + bool in_interrupt; >> > + void *ptr; >> > + >> > + /* >> > + * If the memory allocation is performed from an interrupt context, >> > + * the memory cgroup to charge can't be determined from the context >> > + * of the current task. Instead, we charge the memory cgroup, which >> > + * contained the process created the map. >> > + */ >> > + in_interrupt = in_interrupt(); >> > + if (in_interrupt) >> > + old_memcg = set_active_memcg(map->memcg); >> > + >> > + ptr = kmalloc_node(size, flags, node); >> > + >> > + if (in_interrupt) >> > + set_active_memcg(old_memcg); >> > + >> > + return ptr; >> > +} >> > + >> > +void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, >> > + size_t align, gfp_t gfp) >> > +{ >> > + struct mem_cgroup *old_memcg; >> > + bool in_interrupt; >> > + void *ptr; >> > + >> > + /* >> > + * If the memory allocation is performed from an interrupt context, >> > + * the memory cgroup to charge can't be determined from the context >> > + * of the current task. Instead, we charge the memory cgroup, which >> > + * contained the process created the map. >> > + */ >> > + in_interrupt = in_interrupt(); >> > + if (in_interrupt) >> > + old_memcg = set_active_memcg(map->memcg); >> > + >> > + ptr = __alloc_percpu_gfp(size, align, gfp); >> > + >> > + if (in_interrupt) >> > + set_active_memcg(old_memcg); >> >> For this and above bpf_map_kmalloc_node() one, wouldn't it make more sense to >> perform the temporary memcg unconditionally? >> >> old_memcg = set_active_memcg(map->memcg); >> ptr = kmalloc_node(size, flags, node); >> set_active_memcg(old_memcg); >> >> I think the semantics are otherwise a bit weird and the charging unpredictable; >> this way it would /always/ be accounted against the prog in the memcg that >> originally created the map. >> >> E.g. maps could be shared between progs attached to, say, XDP/tc where in_interrupt() >> holds true with progs attached to skb-cgroup/egress where we're still in process >> context. So some part of the memory is charged against the original map's memcg and >> some other part against the current process' memcg which seems odd, no? Or, for example, >> if we start to run a tracing BPF prog which updates state in a BPF map ... that tracing >> prog now interferes with processes in other memcgs which may not be intentional & could >> lead to potential failures there as opposed when the tracing prog is not run. My concern >> is that the semantics are not quite clear and behavior unpredictable compared to always >> charging against map->memcg. >> >> Similarly, what if an orchestration prog creates dedicated memcg(s) for maps with >> individual limits ... the assumed behavior (imho) would be that whatever memory is >> accounted on the map it can be accurately retrieved from there & similarly limits >> enforced, no? It seems that would not be the case currently. >> >> Thoughts? > > I did consider this option. There are pros and cons. In general we > tend to charge the cgroup which actually allocates the memory, and I > decided to stick with this rule. I agree, it's fairly easy to come > with arguments why always charging the map creator is better. The > opposite is also true: it's not clear why bpf is different here. So > I'm fine with both options, if there is a wide consensus, I'm happy to > switch to the other option. In general, I believe that the current > scheme is more flexible: if someone want to pay in advance, they are > free to preallocate the map. Otherwise it's up to whoever wants to > populate it. I think I agree with Daniel here: conceptually the memory used by a map ought to belong to that map's memcg. I can see how the other scheme can be more flexible, but as Daniel points out it seems like it can lead to hard-to-debug errors... (Side note: I'm really excited about this work in general! The ulimit thing has been a major pain...) -Toke