On Tue, 22 Sep 2020 at 21:07, Alexei Starovoitov <alexei.starovoitov@xxxxxxxxx> wrote: > > On Tue, Sep 22, 2020 at 09:20:27AM +0100, Lorenz Bauer wrote: > > On Mon, 21 Sep 2020 at 23:23, Alexei Starovoitov > > <alexei.starovoitov@xxxxxxxxx> wrote: > > > > > > On Mon, Sep 21, 2020 at 01:12:27PM +0100, Lorenz Bauer wrote: > > > > +struct bpf_reg_types { > > > > + const enum bpf_reg_type types[10]; > > > > +}; > > > > > > any idea on how to make it more robust? > > > > I kind of copied this from the bpf_iter context. I prototyped using an > > enum bpf_reg_type * and then terminating the array with NOT_INIT. > > Writing this out is more involved, and might need some macro magic to > > make it palatable. The current approach is a lot simpler, and I > > figured that the compiler will error out if we ever exceed the 10 > > items. > > The compiler will be silent if number of types is exactly 10, > but at run-time the loop will access out of bounds. Which loop do you refer to? The one in check_reg_type shouldn't go out of bounds due to ARRAY_SIZE: for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { expected = compatible->types[i]; if (expected == NOT_INIT) break; > > > > > > > > + > > > > +static const struct bpf_reg_types *compatible_reg_types[] = { > > > > + [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, > > > > + [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, > > > > + [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, > > > > + [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, > > > > + [ARG_CONST_SIZE] = &scalar_types, > > > > + [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, > > > > + [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, > > > > + [ARG_CONST_MAP_PTR] = &const_map_ptr_types, > > > > + [ARG_PTR_TO_CTX] = &context_types, > > > > + [ARG_PTR_TO_CTX_OR_NULL] = &context_types, > > > > + [ARG_PTR_TO_SOCK_COMMON] = &sock_types, > > > > + [ARG_PTR_TO_SOCKET] = &fullsock_types, > > > > + [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, > > > > + [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, > > > > + [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, > > > > + [ARG_PTR_TO_MEM] = &mem_types, > > > > + [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, > > > > + [ARG_PTR_TO_UNINIT_MEM] = &mem_types, > > > > + [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, > > > > + [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, > > > > + [ARG_PTR_TO_INT] = &int_ptr_types, > > > > + [ARG_PTR_TO_LONG] = &int_ptr_types, > > > > + [__BPF_ARG_TYPE_MAX] = NULL, > > > > > > I don't understand what this extra value is for. > > > I tried: > > > diff --git a/include/linux/bpf.h b/include/linux/bpf.h > > > index fc5c901c7542..87b0d5dcc1ff 100644 > > > --- a/include/linux/bpf.h > > > +++ b/include/linux/bpf.h > > > @@ -292,7 +292,6 @@ enum bpf_arg_type { > > > ARG_PTR_TO_ALLOC_MEM, /* pointer to dynamically allocated memory */ > > > ARG_PTR_TO_ALLOC_MEM_OR_NULL, /* pointer to dynamically allocated memory or NULL */ > > > ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ > > > - __BPF_ARG_TYPE_MAX, > > > }; > > > > > > /* type of values returned from helper functions */ > > > diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c > > > index 15ab889b0a3f..83faa67858b6 100644 > > > --- a/kernel/bpf/verifier.c > > > +++ b/kernel/bpf/verifier.c > > > @@ -4025,7 +4025,6 @@ static const struct bpf_reg_types *compatible_reg_types[] = { > > > [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, > > > [ARG_PTR_TO_INT] = &int_ptr_types, > > > [ARG_PTR_TO_LONG] = &int_ptr_types, > > > - [__BPF_ARG_TYPE_MAX] = NULL, > > > }; > > > > > > and everything is fine as I think it should be. > > > > > > > + compatible = compatible_reg_types[arg_type]; > > > > + if (!compatible) { > > > > + verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); > > > > return -EFAULT; > > > > } > > > > > > This check will trigger the same way when somebody adds new ARG_* and doesn't add to the table. > > > > I think in that case that value of compatible will be undefined, since > > it points past the end of compatible_reg_types. Hence the > > __BPF_ARG_TYPE_MAX to ensure that the array has a NULL slot for new > > arg types. > > I still don't see a point. > If anyone adds one more ARG_ to the end (or anywhere else) > the compatible_reg_types array will be zero inited in that place by the compiler. > Just like it does already for ARG_ANYTHING and ARG_DONTCARE. I looked up designated initializers when I wrote this, since I wasn't super familiar with them: https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html#Designated-Inits Note that the length of the array is the highest value specified plus one. So ARG_ANYTHING and ARG_DONTCARE are OK since there is a higher enum value present in the initializer. If someone adds a new item to enum bpf_arg_type I assume they would add it to the end. In that case the highest value of the initializer doesn't change, and then indexing into compatible_reg_types with the new enum value would be out of bounds. Adding __BPF_ARG_TYPE_MAX fixes that. It's very possible I misunderstood how this whole contraption works, happy to send a patch. -- Lorenz Bauer | Systems Engineer 6th Floor, County Hall/The Riverside Building, SE1 7PB, UK www.cloudflare.com