On Fri, Sep 4, 2020 at 5:08 PM Andrii Nakryiko <andrii.nakryiko@xxxxxxxxx> wrote: > > On Fri, Sep 4, 2020 at 4:20 PM Yonghong Song <yhs@xxxxxx> wrote: > > > > > > > > On 9/4/20 1:30 PM, Andrii Nakryiko wrote: > > > On Fri, Sep 4, 2020 at 12:49 PM Yonghong Song <yhs@xxxxxx> wrote: > > >> > > >> Commit 41c48f3a98231 ("bpf: Support access > > >> to bpf map fields") added support to access map fields > > >> with CORE support. For example, > > >> > > >> struct bpf_map { > > >> __u32 max_entries; > > >> } __attribute__((preserve_access_index)); > > >> > > >> struct bpf_array { > > >> struct bpf_map map; > > >> __u32 elem_size; > > >> } __attribute__((preserve_access_index)); > > >> > > >> struct { > > >> __uint(type, BPF_MAP_TYPE_ARRAY); > > >> __uint(max_entries, 4); > > >> __type(key, __u32); > > >> __type(value, __u32); > > >> } m_array SEC(".maps"); > > >> > > >> SEC("cgroup_skb/egress") > > >> int cg_skb(void *ctx) > > >> { > > >> struct bpf_array *array = (struct bpf_array *)&m_array; > > >> > > >> /* .. array->map.max_entries .. */ > > >> } > > >> > > >> In kernel, bpf_htab has similar structure, > > >> > > >> struct bpf_htab { > > >> struct bpf_map map; > > >> ... > > >> } > > >> > > >> In the above cg_skb(), to access array->map.max_entries, with CORE, the clang will > > >> generate two builtin's. > > >> base = &m_array; > > >> /* access array.map */ > > >> map_addr = __builtin_preserve_struct_access_info(base, 0, 0); > > >> /* access array.map.max_entries */ > > >> max_entries_addr = __builtin_preserve_struct_access_info(map_addr, 0, 0); > > >> max_entries = *max_entries_addr; > > >> > > >> In the current llvm, if two builtin's are in the same function or > > >> in the same function after inlining, the compiler is smart enough to chain > > >> them together and generates like below: > > >> base = &m_array; > > >> max_entries = *(base + reloc_offset); /* reloc_offset = 0 in this case */ > > >> and we are fine. > > >> > > >> But if we force no inlining for one of functions in test_map_ptr() selftest, e.g., > > >> check_default(), the above two __builtin_preserve_* will be in two different > > >> functions. In this case, we will have code like: > > >> func check_hash(): > > >> reloc_offset_map = 0; > > >> base = &m_array; > > >> map_base = base + reloc_offset_map; > > >> check_default(map_base, ...) > > >> func check_default(map_base, ...): > > >> max_entries = *(map_base + reloc_offset_max_entries); > > >> > > >> In kernel, map_ptr (CONST_PTR_TO_MAP) does not allow any arithmetic. > > >> The above "map_base = base + reloc_offset_map" will trigger a verifier failure. > > >> ; VERIFY(check_default(&hash->map, map)); > > >> 0: (18) r7 = 0xffffb4fe8018a004 > > >> 2: (b4) w1 = 110 > > >> 3: (63) *(u32 *)(r7 +0) = r1 > > >> R1_w=invP110 R7_w=map_value(id=0,off=4,ks=4,vs=8,imm=0) R10=fp0 > > >> ; VERIFY_TYPE(BPF_MAP_TYPE_HASH, check_hash); > > >> 4: (18) r1 = 0xffffb4fe8018a000 > > >> 6: (b4) w2 = 1 > > >> 7: (63) *(u32 *)(r1 +0) = r2 > > >> R1_w=map_value(id=0,off=0,ks=4,vs=8,imm=0) R2_w=invP1 R7_w=map_value(id=0,off=4,ks=4,vs=8,imm=0) R10=fp0 > > >> 8: (b7) r2 = 0 > > >> 9: (18) r8 = 0xffff90bcb500c000 > > >> 11: (18) r1 = 0xffff90bcb500c000 > > >> 13: (0f) r1 += r2 > > >> R1 pointer arithmetic on map_ptr prohibited > > >> > > >> To fix the issue, let us permit map_ptr + 0 arithmetic which will > > >> result in exactly the same map_ptr. > > >> > > >> Signed-off-by: Yonghong Song <yhs@xxxxxx> > > >> --- > > >> kernel/bpf/verifier.c | 3 +++ > > >> 1 file changed, 3 insertions(+) > > >> > > >> diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c > > >> index b4e9c56b8b32..92aa985e99df 100644 > > >> --- a/kernel/bpf/verifier.c > > >> +++ b/kernel/bpf/verifier.c > > >> @@ -5317,6 +5317,9 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, > > >> dst, reg_type_str[ptr_reg->type]); > > >> return -EACCES; > > >> case CONST_PTR_TO_MAP: > > >> + if (known && smin_val == 0 && opcode == BPF_ADD) > > > > > > does smin_val imply that var_off is strictly zero? if that's the case, > > > can you please leave a comment stating this clearly, it's hard to tell > > > if that's enough of a check. > > > > It should be, if register state is maintained properly, the following > > function (or its functionality) should have been called. > > > > static void __update_reg64_bounds(struct bpf_reg_state *reg) > > { > > /* min signed is max(sign bit) | min(other bits) */ > > reg->smin_value = max_t(s64, reg->smin_value, > > reg->var_off.value | (reg->var_off.mask > > & S64_MIN)); > > /* max signed is min(sign bit) | max(other bits) */ > > reg->smax_value = min_t(s64, reg->smax_value, > > reg->var_off.value | (reg->var_off.mask > > & S64_MAX)); > > reg->umin_value = max(reg->umin_value, reg->var_off.value); > > reg->umax_value = min(reg->umax_value, > > reg->var_off.value | reg->var_off.mask); > > } > > > > for scalar constant, reg->var_off.mask should be 0. so we will have > > reg->smin_value = reg->smax_value = (s64)reg->var_off.value. > > > > The smin_val is also used below, e.g., BPF_ADD, for a known value. > > That is why I am using smin_val here. > > > > Will add a comment and submit v2. > > it would be way-way more obvious (and reliable in the long run, > probably) if you just used (known && reg->var_off.value == 0). or just > tnum_equals_const(reg->var_off, 0)? Pls dont. smin_val == 0 is a standard way to do this. Just check all other places in this function and everywhere else.