It's very common for various tracing and profiling toolis to need to access /proc/PID/maps contents for stack symbolization needs to learn which shared libraries are mapped in memory, at which file offset, etc. Currently, access to /proc/PID/maps requires CAP_SYS_PTRACE (unless we are looking at data for our own process, which is a trivial case not too relevant for profilers use cases). Unfortunately, CAP_SYS_PTRACE implies way more than just ability to discover memory layout of another process: it allows to fully control arbitrary other processes. This is problematic from security POV for applications that only need read-only /proc/PID/maps (and other similar read-only data) access, and in large production settings CAP_SYS_PTRACE is frowned upon even for the system-wide profilers. On the other hand, it's already possible to access similar kind of information (and more) with just CAP_PERFMON capability. E.g., setting up PERF_RECORD_MMAP collection through perf_event_open() would give one similar information to what /proc/PID/maps provides. CAP_PERFMON, together with CAP_BPF, is already a very common combination for system-wide profiling and observability application. As such, it's reasonable and convenient to be able to access /proc/PID/maps with CAP_PERFMON capabilities instead of CAP_SYS_PTRACE. For procfs, these permissions are checked through common mm_access() helper, and so we augment that with cap_perfmon() check *only* if requested mode is PTRACE_MODE_READ. I.e., PTRACE_MODE_ATTACH wouldn't be permitted by CAP_PERFMON. So /proc/PID/mem, which uses PTRACE_MODE_ATTACH, won't be permitted by CAP_PERFMON, but /proc/PID/maps, /proc/PID/environ, and a bunch of other read-only contents will be allowable under CAP_PERFMON. Besides procfs itself, mm_access() is used by process_madvise() and process_vm_{readv,writev}() syscalls. The former one uses PTRACE_MODE_READ to avoid leaking ASLR metadata, and as such CAP_PERFMON seems like a meaningful allowable capability as well. process_vm_{readv,writev} currently assume PTRACE_MODE_ATTACH level of permissions (though for readv PTRACE_MODE_READ seems more reasonable, but that's outside the scope of this change), and as such won't be affected by this patch. Signed-off-by: Andrii Nakryiko <andrii@xxxxxxxxxx> --- v1->v2: - expanded commit message a bit more about PTRACE_MODE_ATTACH vs PTRACE_MODE_READ uses inside procfs; left the generic logic untouched, as it still seems generally meaningful to allow CAP_PERFMON for read-only memory access, given its use within perf and BPF subsystems; - moved perfmon_capable() check after ptrace_may_access() to minimize the worry of extra audit messages where CAP_SYS_PTRACE would be provided (Christian); - s/can/may/_access_mm rename (Kees); kernel/fork.c | 13 ++++++++++++- 1 file changed, 12 insertions(+), 1 deletion(-) diff --git a/kernel/fork.c b/kernel/fork.c index ded49f18cd95..452018f752a1 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -1547,6 +1547,17 @@ struct mm_struct *get_task_mm(struct task_struct *task) } EXPORT_SYMBOL_GPL(get_task_mm); +static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) +{ + if (mm == current->mm) + return true; + if (ptrace_may_access(task, mode)) + return true; + if ((mode & PTRACE_MODE_READ) && perfmon_capable()) + return true; + return false; +} + struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) { struct mm_struct *mm; @@ -1559,7 +1570,7 @@ struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) mm = get_task_mm(task); if (!mm) { mm = ERR_PTR(-ESRCH); - } else if (mm != current->mm && !ptrace_may_access(task, mode)) { + } else if (!may_access_mm(mm, task, mode)) { mmput(mm); mm = ERR_PTR(-EACCES); } -- 2.43.5