On Tue, Jan 7, 2020 at 12:18 PM Yonghong Song <yhs@xxxxxx> wrote: > > > > On 1/6/20 11:02 PM, Brian Vazquez wrote: > > On Fri, Dec 13, 2019 at 12:58 PM Yonghong Song <yhs@xxxxxx> wrote: > >> > >> > >> > >> On 12/11/19 2:33 PM, Brian Vazquez wrote: > >>> From: Yonghong Song <yhs@xxxxxx> > >>> > >>> htab can't use generic batch support due some problematic behaviours > >>> inherent to the data structre, i.e. while iterating the bpf map a > >>> concurrent program might delete the next entry that batch was about to > >>> use, in that case there's no easy solution to retrieve the next entry, > >>> the issue has been discussed multiple times (see [1] and [2]). > >>> > >>> The only way hmap can be traversed without the problem previously > >>> exposed is by making sure that the map is traversing entire buckets. > >>> This commit implements those strict requirements for hmap, the > >>> implementation follows the same interaction that generic support with > >>> some exceptions: > >>> > >>> - If keys/values buffer are not big enough to traverse a bucket, > >>> ENOSPC will be returned. > >>> - out_batch contains the value of the next bucket in the iteration, not > >>> the next key, but this is transparent for the user since the user > >>> should never use out_batch for other than bpf batch syscalls. > >>> > >>> Note that only lookup and lookup_and_delete batch ops require the hmap > >>> specific implementation, update/delete batch ops can be the generic > >>> ones. > >>> > >>> [1] https://lore.kernel.org/bpf/20190724165803.87470-1-brianvv@xxxxxxxxxx/ > >>> [2] https://lore.kernel.org/bpf/20190906225434.3635421-1-yhs@xxxxxx/ > >>> > >>> Signed-off-by: Yonghong Song <yhs@xxxxxx> > >>> Signed-off-by: Brian Vazquez <brianvv@xxxxxxxxxx> > >>> --- > >>> kernel/bpf/hashtab.c | 242 +++++++++++++++++++++++++++++++++++++++++++ > >>> 1 file changed, 242 insertions(+) > >>> > >>> diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c > >>> index 22066a62c8c97..fac107bdaf9ec 100644 > >>> --- a/kernel/bpf/hashtab.c > >>> +++ b/kernel/bpf/hashtab.c > >>> @@ -17,6 +17,17 @@ > >>> (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ > >>> BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) > >>> > >>> +#define BATCH_OPS(_name) \ > >>> + .map_lookup_batch = \ > >>> + _name##_map_lookup_batch, \ > >>> + .map_lookup_and_delete_batch = \ > >>> + _name##_map_lookup_and_delete_batch, \ > >>> + .map_update_batch = \ > >>> + generic_map_update_batch, \ > >>> + .map_delete_batch = \ > >>> + generic_map_delete_batch > >>> + > >>> + > >>> struct bucket { > >>> struct hlist_nulls_head head; > >>> raw_spinlock_t lock; > >>> @@ -1232,6 +1243,233 @@ static void htab_map_seq_show_elem(struct bpf_map *map, void *key, > >>> rcu_read_unlock(); > >>> } > >>> > >>> +static int > >>> +__htab_map_lookup_and_delete_batch(struct bpf_map *map, > >>> + const union bpf_attr *attr, > >>> + union bpf_attr __user *uattr, > >>> + bool do_delete, bool is_lru_map, > >>> + bool is_percpu) > >>> +{ > >>> + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); > >>> + u32 bucket_cnt, total, key_size, value_size, roundup_key_size; > >>> + void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; > >>> + void __user *uvalues = u64_to_user_ptr(attr->batch.values); > >>> + void __user *ukeys = u64_to_user_ptr(attr->batch.keys); > >>> + void *ubatch = u64_to_user_ptr(attr->batch.in_batch); > >>> + u64 elem_map_flags, map_flags; > >>> + struct hlist_nulls_head *head; > >>> + u32 batch, max_count, size; > >>> + struct hlist_nulls_node *n; > >>> + unsigned long flags; > >>> + struct htab_elem *l; > >>> + struct bucket *b; > >>> + int ret = 0; > >>> + > >>> + max_count = attr->batch.count; > >>> + if (!max_count) > >>> + return 0; > >>> + > >>> + elem_map_flags = attr->batch.elem_flags; > >>> + if ((elem_map_flags & ~BPF_F_LOCK) || > >>> + ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) > >>> + return -EINVAL; > >>> + > >>> + map_flags = attr->batch.flags; > >>> + if (map_flags) > >>> + return -EINVAL; > >>> + > >>> + batch = 0; > >>> + if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) > >>> + return -EFAULT; > >>> + > >>> + if (batch >= htab->n_buckets) > >>> + return -ENOENT; > >>> + > >>> + /* We cannot do copy_from_user or copy_to_user inside > >>> + * the rcu_read_lock. Allocate enough space here. > >>> + */ > >>> + key_size = htab->map.key_size; > >>> + roundup_key_size = round_up(htab->map.key_size, 8); > >>> + value_size = htab->map.value_size; > >>> + size = round_up(value_size, 8); > >>> + if (is_percpu) > >>> + value_size = size * num_possible_cpus(); > >>> + keys = kvmalloc(key_size, GFP_USER | __GFP_NOWARN); > >>> + values = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); > >>> + if (!keys || !values) { > >>> + ret = -ENOMEM; > >>> + goto out; > >>> + } > >>> + > >>> + dst_key = keys; > >>> + dst_val = values; > >>> + total = 0; > >>> + > >>> + preempt_disable(); > >>> + this_cpu_inc(bpf_prog_active); > >>> + rcu_read_lock(); > >>> + > >>> +again: > >>> + b = &htab->buckets[batch]; > >>> + head = &b->head; > >>> + raw_spin_lock_irqsave(&b->lock, flags); > >>> + > >>> + bucket_cnt = 0; > >>> + hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) > >>> + bucket_cnt++; > >>> + > >>> + if (bucket_cnt > (max_count - total)) { > >>> + if (total == 0) > >>> + ret = -ENOSPC; > >>> + goto after_loop; > >>> + } > >>> + > >>> + hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { > >>> + memcpy(dst_key, l->key, key_size); > >>> + > >>> + if (is_percpu) { > >>> + int off = 0, cpu; > >>> + void __percpu *pptr; > >>> + > >>> + pptr = htab_elem_get_ptr(l, map->key_size); > >>> + for_each_possible_cpu(cpu) { > >>> + bpf_long_memcpy(dst_val + off, > >>> + per_cpu_ptr(pptr, cpu), size); > >>> + off += size; > >>> + } > >>> + } else { > >>> + value = l->key + roundup_key_size; > >>> + if (elem_map_flags & BPF_F_LOCK) > >>> + copy_map_value_locked(map, dst_val, value, > >>> + true); > >>> + else > >>> + copy_map_value(map, dst_val, value); > >>> + check_and_init_map_lock(map, dst_val); > >>> + } > >>> + if (do_delete) { > >>> + hlist_nulls_del_rcu(&l->hash_node); > >>> + if (is_lru_map) > >>> + bpf_lru_push_free(&htab->lru, &l->lru_node); > >>> + else > >>> + free_htab_elem(htab, l); > >>> + } > >>> + if (copy_to_user(ukeys + total * key_size, keys, key_size) || > >>> + copy_to_user(uvalues + total * value_size, values, > >>> + value_size)) { > >> > >> We cannot do copy_to_user inside atomic region where irq is disabled > >> with raw_spin_lock_irqsave(). We could do the following: > >> . we kalloc memory before preempt_disable() with the current count > >> of bucket size. > >> . inside the raw_spin_lock_irqsave() region, we can do copy to kernel > >> memory. > >> . inside the raw_spin_lock_irqsave() region, if the bucket size > >> changes, we can have a few retries to increase allocation size > >> before giving up. > >> Do you think this may work? > > > > Yes, it does. > > > > What should be the initial value for the allocated memory > > max_entries/2? Do you see any issue if we just kalloc the entire > > buffer? > > Allocating max_entries/2 or entire buffer risks allocating too much > memory from the system, which may not be a good thing in a production > system. That is why I proposed to allocate memory at bucket level. > For a reasonable balanced hash table, this should not cause large > memory pressure on the host. What do you think? Sounds reasonable, I'll do that! Thanks for the feedback! > > > > >> > >>> + ret = -EFAULT; > >>> + goto after_loop; > >>> + } > >>> + total++; > >>> + } > >>> + > >>> + batch++; > >>> + if (batch >= htab->n_buckets) { > >>> + ret = -ENOENT; > >>> + goto after_loop; > >>> + } > >>> + > >>> + raw_spin_unlock_irqrestore(&b->lock, flags); > >>> + goto again; > >>> + > >>> +after_loop: > >>> + raw_spin_unlock_irqrestore(&b->lock, flags); > >>> + > >>> + rcu_read_unlock(); > >>> + this_cpu_dec(bpf_prog_active); > >>> + preempt_enable(); > >>> + > >>> + if (ret && ret != -ENOENT) > >>> + goto out; > >>> + > >>> + /* copy data back to user */ > >>> + ubatch = u64_to_user_ptr(attr->batch.out_batch); > >>> + if (copy_to_user(ubatch, &batch, sizeof(batch)) || > >>> + put_user(total, &uattr->batch.count)) > >>> + ret = -EFAULT; > >>> + > >>> +out: > >>> + kvfree(keys); > >>> + kvfree(values); > >>> + return ret; > >>> +} > >>> + > >> [...]