Add a new variant of bpf_d_path() named bpf_path_d_path() which takes the form of a BPF kfunc and enforces KF_TRUSTED_ARGS semantics onto its arguments. This new d_path() based BPF kfunc variant is intended to address the legacy bpf_d_path() BPF helper's susceptibility to memory corruption issues [0, 1, 2] by ensuring to only operate on supplied arguments which are deemed trusted by the BPF verifier. Typically, this means that only pointers to a struct path which have been referenced counted may be supplied. In addition to the new bpf_path_d_path() BPF kfunc, we also add a KF_ACQUIRE based BPF kfunc bpf_get_task_exe_file() and KF_RELEASE counterpart BPF kfunc bpf_put_file(). This is so that the new bpf_path_d_path() BPF kfunc can be used more flexibility from within the context of a BPF LSM program. It's rather common to ascertain the backing executable file for the calling process by performing the following walk current->mm->exe_file while instrumenting a given operation from the context of the BPF LSM program. However, walking current->mm->exe_file directly is never deemed to be OK, and doing so from both inside and outside of BPF LSM program context should be considered as a bug. Using bpf_get_task_exe_file() and in turn bpf_put_file() will allow BPF LSM programs to reliably get and put references to current->mm->exe_file. As of now, all the newly introduced BPF kfuncs within this patch are limited to sleepable BPF LSM program types. Therefore, they may only be called when a BPF LSM program is attached to one of the listed attachment points defined within the sleepable_lsm_hooks BTF ID set. [0] https://lore.kernel.org/bpf/CAG48ez0ppjcT=QxU-jtCUfb5xQb3mLr=5FcwddF_VKfEBPs_Dg@xxxxxxxxxxxxxx/ [1] https://lore.kernel.org/bpf/20230606181714.532998-1-jolsa@xxxxxxxxxx/ [2] https://lore.kernel.org/bpf/20220219113744.1852259-1-memxor@xxxxxxxxx/ Signed-off-by: Matt Bobrowski <mattbobrowski@xxxxxxxxxx> --- fs/Makefile | 1 + fs/bpf_fs_kfuncs.c | 133 +++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 134 insertions(+) create mode 100644 fs/bpf_fs_kfuncs.c diff --git a/fs/Makefile b/fs/Makefile index 6ecc9b0a53f2..61679fd587b7 100644 --- a/fs/Makefile +++ b/fs/Makefile @@ -129,3 +129,4 @@ obj-$(CONFIG_EFIVAR_FS) += efivarfs/ obj-$(CONFIG_EROFS_FS) += erofs/ obj-$(CONFIG_VBOXSF_FS) += vboxsf/ obj-$(CONFIG_ZONEFS_FS) += zonefs/ +obj-$(CONFIG_BPF_LSM) += bpf_fs_kfuncs.o diff --git a/fs/bpf_fs_kfuncs.c b/fs/bpf_fs_kfuncs.c new file mode 100644 index 000000000000..3813e2a83313 --- /dev/null +++ b/fs/bpf_fs_kfuncs.c @@ -0,0 +1,133 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2024 Google LLC. */ + +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/btf_ids.h> +#include <linux/dcache.h> +#include <linux/err.h> +#include <linux/fs.h> +#include <linux/file.h> +#include <linux/init.h> +#include <linux/mm.h> +#include <linux/path.h> +#include <linux/sched.h> + +__bpf_kfunc_start_defs(); +/** + * bpf_get_task_exe_file - get a reference on the exe_file struct file member of + * the mm_struct that is nested within the supplied + * task_struct + * @task: task_struct of which the nested mm_struct exe_file member to get a + * reference on + * + * Get a reference on the exe_file struct file member field of the mm_struct + * nested within the supplied *task*. The referenced file pointer acquired by + * this BPF kfunc must be released using bpf_put_file(). Failing to call + * bpf_put_file() on the returned referenced struct file pointer that has been + * acquired by this BPF kfunc will result in the BPF program being rejected by + * the BPF verifier. + * + * This BPF kfunc may only be called from sleepable BPF LSM programs. + * + * Internally, this BPF kfunc leans on get_task_exe_file(), such that calling + * bpf_get_task_exe_file() would be analogous to calling get_task_exe_file() + * directly in kernel context. + * + * Return: A referenced struct file pointer to the exe_file member of the + * mm_struct that is nested within the supplied *task*. On error, NULL is + * returned. + */ +__bpf_kfunc struct file *bpf_get_task_exe_file(struct task_struct *task) +{ + return get_task_exe_file(task); +} + +/** + * bpf_put_file - put a reference on the supplied file + * @file: file to put a reference on + * + * Put a reference on the supplied *file*. Only referenced file pointers may be + * passed to this BPF kfunc. Attempting to pass an unreferenced file pointer, or + * any other arbitrary pointer for that matter, will result in the BPF program + * being rejected by the BPF verifier. + * + * This BPF kfunc may only be called from sleepable BPF LSM programs. Though + * fput() can be called from IRQ context, we're enforcing sleepability here. + */ +__bpf_kfunc void bpf_put_file(struct file *file) +{ + fput(file); +} + +/** + * bpf_path_d_path - resolve the pathname for the supplied path + * @path: path to resolve the pathname for + * @buf: buffer to return the resolved pathname in + * @buf__sz: length of the supplied buffer + * + * Resolve the pathname for the supplied *path* and store it in *buf*. This BPF + * kfunc is the safer variant of the legacy bpf_d_path() helper and should be + * used in place of bpf_d_path() whenever possible. It enforces KF_TRUSTED_ARGS + * semantics, meaning that the supplied *path* must itself hold a valid + * reference, or else the BPF program will be outright rejected by the BPF + * verifier. + * + * This BPF kfunc may only be called from sleepable BPF LSM programs. + * + * Return: A positive integer corresponding to the length of the resolved + * pathname in *buf*, including the NUL termination character. On error, a + * negative integer is returned. + */ +__bpf_kfunc int bpf_path_d_path(struct path *path, char *buf, size_t buf__sz) +{ + int len; + char *ret; + + if (buf__sz <= 0) + return -EINVAL; + + /* Usually, d_path() will never involuntarily put the calling thread to + * sleep. However, there could be exceptions to this as d_op->d_dname() + * has free rein over what it wants to do. Additionally, given that this + * new d_path() based BPF kfunc enforces KF_TRUSTED_ARGS, it'll likely + * only ever be called alongside or in similar contexts, to other + * supporting BPF kfuncs that may end up being put to sleep. + */ + ret = d_path(path, buf, buf__sz); + if (IS_ERR(ret)) + return PTR_ERR(ret); + + len = buf + buf__sz - ret; + memmove(buf, ret, len); + return len; +} +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(bpf_fs_kfunc_set_ids) +BTF_ID_FLAGS(func, bpf_get_task_exe_file, + KF_ACQUIRE | KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_put_file, KF_RELEASE | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_path_d_path, KF_TRUSTED_ARGS | KF_SLEEPABLE) +BTF_KFUNCS_END(bpf_fs_kfunc_set_ids) + +static int bpf_fs_kfuncs_filter(const struct bpf_prog *prog, u32 kfunc_id) +{ + if (!btf_id_set8_contains(&bpf_fs_kfunc_set_ids, kfunc_id) || + prog->type == BPF_PROG_TYPE_LSM) + return 0; + return -EACCES; +} + +static const struct btf_kfunc_id_set bpf_fs_kfunc_set = { + .owner = THIS_MODULE, + .set = &bpf_fs_kfunc_set_ids, + .filter = bpf_fs_kfuncs_filter, +}; + +static int __init bpf_fs_kfuncs_init(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_LSM, &bpf_fs_kfunc_set); +} + +late_initcall(bpf_fs_kfuncs_init); -- 2.46.0.rc1.232.g9752f9e123-goog