On 4/27/2024 4:36 AM, Andrii Nakryiko wrote:
On Tue, Apr 23, 2024 at 7:26 PM Xu Kuohai <xukuohai@xxxxxxxxxxxxxxx> wrote:
On 4/24/2024 5:55 AM, Yonghong Song wrote:
On 4/20/24 1:33 AM, Xu Kuohai wrote:
On 4/20/2024 7:00 AM, Eduard Zingerman wrote:
On Thu, 2024-04-11 at 20:27 +0800, Xu Kuohai wrote:
From: Xu Kuohai <xukuohai@xxxxxxxxxx>
With lsm return value check, the no-alu32 version test_libbpf_get_fd_by_id_opts
is rejected by the verifier, and the log says:
0: R1=ctx() R10=fp0
; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
0: (b7) r0 = 0 ; R0_w=0
1: (79) r2 = *(u64 *)(r1 +0)
func 'bpf_lsm_bpf_map' arg0 has btf_id 916 type STRUCT 'bpf_map'
2: R1=ctx() R2_w=trusted_ptr_bpf_map()
; if (map != (struct bpf_map *)&data_input) @ test_libbpf_get_fd_by_id_opts.c:29
2: (18) r3 = 0xffff9742c0951a00 ; R3_w=map_ptr(map=data_input,ks=4,vs=4)
4: (5d) if r2 != r3 goto pc+4 ; R2_w=trusted_ptr_bpf_map() R3_w=map_ptr(map=data_input,ks=4,vs=4)
; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
5: (79) r0 = *(u64 *)(r1 +8) ; R0_w=scalar() R1=ctx()
; if (fmode & FMODE_WRITE) @ test_libbpf_get_fd_by_id_opts.c:32
6: (67) r0 <<= 62 ; R0_w=scalar(smax=0x4000000000000000,umax=0xc000000000000000,smin32=0,smax32=umax32=0,var_off=(0x0; 0xc000000000000000))
7: (c7) r0 s>>= 63 ; R0_w=scalar(smin=smin32=-1,smax=smax32=0)
; @ test_libbpf_get_fd_by_id_opts.c:0
8: (57) r0 &= -13 ; R0_w=scalar(smax=0x7ffffffffffffff3,umax=0xfffffffffffffff3,smax32=0x7ffffff3,umax32=0xfffffff3,var_off=(0x0; 0xfffffffffffffff3))
; int BPF_PROG(check_access, struct bpf_map *map, fmode_t fmode) @ test_libbpf_get_fd_by_id_opts.c:27
9: (95) exit
[...]
As suggested by Eduard, this patch makes a special case for source
or destination register of '&=' operation being in range [-1, 0].
Meaning that one of the '&=' operands is either:
- all ones, in which case the counterpart is the result of the operation;
- all zeros, in which case zero is the result of the operation.
And MIN and MAX values could be derived based on above two observations.
[0] https://lore.kernel.org/bpf/e62e2971301ca7f2e9eb74fc500c520285cad8f5.camel@xxxxxxxxx/
[1] https://github.com/llvm/llvm-project/blob/4523a267829c807f3fc8fab8e5e9613985a51565/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
Suggested-by: Eduard Zingerman <eddyz87@xxxxxxxxx>
Signed-off-by: Xu Kuohai <xukuohai@xxxxxxxxxx>
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 640747b53745..30c551d39329 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -13374,6 +13374,24 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
dst_reg->u32_min_value = var32_off.value;
dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
+ /* Special case: src_reg is known and dst_reg is in range [-1, 0] */
+ if (src_known &&
+ dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0 &&
+ dst_reg->smin_value == -1 && dst_reg->smax_value == 0) {
please keep if () condition aligned across multiple lines, it's super
confusing this way
OK, will update the align style
+ dst_reg->s32_min_value = min_t(s32, src_reg->s32_min_value, 0);
+ dst_reg->s32_max_value = max_t(s32, src_reg->s32_min_value, 0);
do we need to update tnum parts as well (or reset and re-derive, probably)?
btw, can't we support src being a range here? the idea is that dst_reg
either all ones or all zeros. For and it means that it either stays
all zero, or will be *exactly equal* to src, right? So I think the
logic would be:
a) if [s32_min, s32_max] is on the same side of zero, then resulting
range would be [min(s32_min, 0), max(s32_max, 0)], just like you have
here
b) if [s32_min, s32_max] contains zero, then resulting range will be
exactly [s32_min, s32_max]
Or did I make a mistake above?
Totally agree, the AND of any set with the range [-1,0] is equivalent
to adding number 0 to the set!
Based on this observation, I've rewritten the patch as follows.
diff --git a/include/linux/tnum.h b/include/linux/tnum.h
index 3c13240077b8..5e795d728b9f 100644
--- a/include/linux/tnum.h
+++ b/include/linux/tnum.h
@@ -52,6 +52,9 @@ struct tnum tnum_mul(struct tnum a, struct tnum b);
/* Return a tnum representing numbers satisfying both @a and @b */
struct tnum tnum_intersect(struct tnum a, struct tnum b);
+/* Return a tnum representing numbers satisfying either @a or @b */
+struct tnum tnum_union(struct tnum a, struct tnum b);
+
/* Return @a with all but the lowest @size bytes cleared */
struct tnum tnum_cast(struct tnum a, u8 size);
diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c
index 9dbc31b25e3d..9d4480a683ca 100644
--- a/kernel/bpf/tnum.c
+++ b/kernel/bpf/tnum.c
@@ -150,6 +150,29 @@ struct tnum tnum_intersect(struct tnum a, struct tnum b)
return TNUM(v & ~mu, mu);
}
+/*
+ * Each bit has 3 states: unkown, known 0, known 1. If using x to represent
+ * unknown state, the result of the union of two bits is as follows:
+ *
+ * | x 0 1
+ * -----+------------
+ * x | x x x
+ * 0 | x 0 x
+ * 1 | x x 1
+ *
+ * For tnum a and b, only the bits that are both known 0 or known 1 in a
+ * and b are known in the result of union a and b.
+ */
+struct tnum tnum_union(struct tnum a, struct tnum b)
+{
+ u64 v0, v1, mu;
+
+ mu = a.mask | b.mask; // unkown bits either in a or b
+ v1 = (a.value & b.value) & ~mu; // "known 1" bits in both a and b
+ v0 = (~a.value & ~b.value) & ~mu; // "known 0" bits in both a and b
+ return TNUM(v1, mu | ~(v0 | v1));
+}
+
struct tnum tnum_cast(struct tnum a, u8 size)
{
a.value &= (1ULL << (size * 8)) - 1;
{
a.value &= (1ULL << (size * 8)) - 1;
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 8f0f2e21699e..b69c89bc5cfc 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -13478,6 +13478,28 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
return;
}
+ /* Special case: dst_reg is in range [-1, 0] */
+ if (dst_reg->s32_min_value == -1 && dst_reg->s32_max_value == 0) {
+ var32_off = tnum_union(src_reg->var_off, tnum_const(0));
+ dst_reg->var_off = tnum_with_subreg(dst_reg->var_off, var32_off);
+ dst_reg->u32_min_value = var32_off.value;
+ dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
+ dst_reg->s32_min_value = min_t(s32, src_reg->s32_min_value, 0);
+ dst_reg->s32_max_value = max_t(s32, src_reg->s32_max_value, 0);
+ return;
+ }
+
+ /* Special case: src_reg is in range [-1, 0] */
+ if (src_reg->s32_min_value == -1 && src_reg->s32_max_value == 0) {
+ var32_off = tnum_union(dst_reg->var_off, tnum_const(0));
+ dst_reg->var_off = tnum_with_subreg(dst_reg->var_off, var32_off);
+ dst_reg->u32_min_value = var32_off.value;
+ dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
+ dst_reg->s32_min_value = min_t(s32, dst_reg->s32_min_value, 0);
+ dst_reg->s32_max_value = max_t(s32, dst_reg->s32_max_value, 0);
+ return;
+ }
+
/* We get our minimum from the var_off, since that's inherently
* bitwise. Our maximum is the minimum of the operands' maxima.
*/
@@ -13508,6 +13530,26 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
return;
}
+ /* Special case: dst_reg is in range [-1, 0] */
+ if (dst_reg->smin_value == -1 && dst_reg->smax_value == 0) {
+ dst_reg->var_off = tnum_union(src_reg->var_off, tnum_const(0));
+ dst_reg->umin_value = dst_reg->var_off.value;
+ dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
+ dst_reg->smin_value = min_t(s64, src_reg->smin_value, 0);
+ dst_reg->smax_value = max_t(s64, src_reg->smax_value, 0);
+ return;
+ }
+
+ /* Special case: src_reg is in range [-1, 0] */
+ if (src_reg->smin_value == -1 && src_reg->smax_value == 0) {
+ dst_reg->var_off = tnum_union(dst_reg->var_off, tnum_const(0));
+ dst_reg->umin_value = dst_reg->var_off.value;
+ dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
+ dst_reg->smin_value = min_t(s64, dst_reg->smin_value, 0);
+ dst_reg->smax_value = max_t(s64, dst_reg->smax_value, 0);
+ return;
+ }
+
+ return;
+ }
+
+ /* Special case: dst_reg is known and src_reg is in range [-1, 0] */
+ if (dst_known &&
+ src_reg->s32_min_value == -1 && src_reg->s32_max_value == 0 &&
+ src_reg->smin_value == -1 && src_reg->smax_value == 0) {
+ dst_reg->s32_min_value = min_t(s32, dst_reg->s32_min_value, 0);
+ dst_reg->s32_max_value = max_t(s32, dst_reg->s32_min_value, 0);
+ return;
+ }
+
/* Safe to set s32 bounds by casting u32 result into s32 when u32
* doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
*/
[...]