On 3/18/24 6:25 AM, Jesper Dangaard Brouer wrote:
The BPF map type LPM (Longest Prefix Match) is used heavily
in production by multiple products that have BPF components.
Perf data shows trie_lookup_elem() and longest_prefix_match()
being part of kernels perf top.
For every level in the LPM tree trie_lookup_elem() calls out
to longest_prefix_match(). The compiler is free to inline this
call, but chooses not to inline, because other slowpath callers
(that can be invoked via syscall) exists like trie_update_elem(),
trie_delete_elem() or trie_get_next_key().
bcc/tools/funccount -Ti 1 'trie_lookup_elem|longest_prefix_match.isra.0'
FUNC COUNT
trie_lookup_elem 664945
longest_prefix_match.isra.0 8101507
Observation on a single random machine shows a factor 12 between
the two functions. Given an average of 12 levels in the trie being
searched.
This patch force inlining longest_prefix_match(), but only for
the lookup fastpath to balance object instruction size.
In production with AMD CPUs, measuring the function latency of
'trie_lookup_elem' (bcc/tools/funclatency) we are seeing an improvement
function latency reduction 7-8% with this patch applied (to production
kernels 6.6 and 6.1). Analyzing perf data, we can explain this rather
large improvement due to reducing the overhead for AMD side-channel
mitigation SRSO (Speculative Return Stack Overflow).
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Jesper Dangaard Brouer <hawk@xxxxxxxxxx>
I checked out internal PGO (Profile-Guided Optimization) kernel and
it did exactly like the above described: longest_prefix_match() is inlined
to trie_lookup_elem(), but not others.
Acked-by: Yonghong Song <yonghong.song@xxxxxxxxx>
---
kernel/bpf/lpm_trie.c | 18 +++++++++++++-----
1 file changed, 13 insertions(+), 5 deletions(-)
diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c
index 050fe1ebf0f7..939620b91c0e 100644
--- a/kernel/bpf/lpm_trie.c
+++ b/kernel/bpf/lpm_trie.c
@@ -155,16 +155,17 @@ static inline int extract_bit(const u8 *data, size_t index)
}
/**
- * longest_prefix_match() - determine the longest prefix
+ * __longest_prefix_match() - determine the longest prefix
* @trie: The trie to get internal sizes from
* @node: The node to operate on
* @key: The key to compare to @node
*
* Determine the longest prefix of @node that matches the bits in @key.
*/
-static size_t longest_prefix_match(const struct lpm_trie *trie,
- const struct lpm_trie_node *node,
- const struct bpf_lpm_trie_key_u8 *key)
+static __always_inline
+size_t __longest_prefix_match(const struct lpm_trie *trie,
+ const struct lpm_trie_node *node,
+ const struct bpf_lpm_trie_key_u8 *key)
{
u32 limit = min(node->prefixlen, key->prefixlen);
u32 prefixlen = 0, i = 0;
@@ -224,6 +225,13 @@ static size_t longest_prefix_match(const struct lpm_trie *trie,
return prefixlen;
}
+static size_t longest_prefix_match(const struct lpm_trie *trie,
+ const struct lpm_trie_node *node,
+ const struct bpf_lpm_trie_key_u8 *key)
+{
+ return __longest_prefix_match(trie, node, key);
+}
+
/* Called from syscall or from eBPF program */
static void *trie_lookup_elem(struct bpf_map *map, void *_key)
{
@@ -245,7 +253,7 @@ static void *trie_lookup_elem(struct bpf_map *map, void *_key)
* If it's the maximum possible prefix for this trie, we have
* an exact match and can return it directly.
*/
- matchlen = longest_prefix_match(trie, node, key);
+ matchlen = __longest_prefix_match(trie, node, key);
if (matchlen == trie->max_prefixlen) {
found = node;
break;