On XDP-based virtual network gateway, ffs (aka find first set) algorithm is used to find the index of the very first 1-value bit in a bitmap, which is an array of u64, in the gateway's ACL module. The ACL module was designed from these two papers: * "eBPF / XDP based firewall and packet filtering"[1] * "Securing Linux with a Faster and Scalable Iptables"[2] In the ACL module, the key details are: 1. Match source address to get a bitmap. 2. Match destination address to get a bitmap. 3. Match l4 protocol to get a bitmap. 4. Match source port to get a bitmap. 5. Match destination port to get a bitmap. Finally, by traversing these 5 bitmaps and doing bitwise-and on 5 u64s meanwhile, for every bitwise-and result, an u64, if it's not zero, do ffs to find the index of the very first 1-value bit in the result. When the index is found, convert it to a rule index of a rule policy bpf map, whose type is BPF_MAP_TYPE_ARRAY or BPF_MAP_TYPE_PERCPU_ARRAY. If __ffs64() kernel function can be reused in bpf, it can save some time in finding the index of the very first 1-value bit in an u64. Like AVX2, __ffs64() will be compiled to one instruction, "rep bsf", on x86. Then, I do compare bpf-implemented __ffs64() with this kfunc bpf_ffs64() with following bpf code snippet: #include "vmlinux.h" #include "bpf/bpf_helpers.h" unsigned long bpf_ffs64(u64 word) __ksym; static __noinline __u64 __ffs64(__u64 word) { __u64 shift = 0; if ((word & 0xffffffff) == 0) { word >>= 32; shift += 32; } if ((word & 0xffff) == 0) { word >>= 16; shift += 16; } if ((word & 0xff) == 0) { word >>= 8; shift += 8; } if ((word & 0xf) == 0) { word >>= 4; shift += 4; } if ((word & 0x3) == 0) { word >>= 2; shift += 2; } if ((word & 0x1) == 0) { shift += 1; } return shift; } SEC("tc") int tc_ffs1(struct __sk_buff *skb) { void *data_end = (void *)(long) skb->data_end; u64 *data = (u64 *)(long) skb->data; if ((void *)(u64) (data + 1) > data_end) return 0; return __ffs64(*data); } SEC("tc") int tc_ffs2(struct __sk_buff *skb) { void *data_end = (void *)(long) skb->data_end; u64 *data = (u64 *)(long) skb->data; if ((void *)(u64) (data + 1) > data_end) return 0; return bpf_ffs64(*data); } char _license[] SEC("license") = "GPL"; Then, I run them on a KVM-based VM, which runs on a 48 cores and "Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz" CPU server. As for the 1-value bit offset is 0, and for every time the bpf progs run for 10000000 times, the average time cost data of bpf progs running is: +----------+---------------+-------------------+ | Nth time | bpf __ffs64() | kfunc bpf_ffs64() | +----------+---------------+-------------------+ | 1 | 164ns | 154ns | | 2 | 166ns | 155ns | | 3 | 160ns | 154ns | | 4 | 161ns | 157ns | | 5 | 161ns | 155ns | | 6 | 163ns | 155ns | | 7 | 164ns | 155ns | | 8 | 159ns | 159ns | | 9 | 171ns | 154ns | | 10 | 164ns | 156ns | | 11 | 161ns | 155ns | | 12 | 160ns | 155ns | | 13 | 161ns | 154ns | | 14 | 165ns | 154ns | | 15 | 161ns | 162ns | | 16 | 161ns | 157ns | | 17 | 164ns | 154ns | | 18 | 162ns | 154ns | | 19 | 159ns | 156ns | | 20 | 160ns | 154ns | +----------+---------------+-------------------+ As for the 1-value bit offset is 63, and for every time the bpf progs run for 10000000 times, the average time cost data of bpf progs running is: +----------+---------------+-------------------+ | Nth time | bpf __ffs64() | kfunc bpf_ffs64() | +----------+---------------+-------------------+ | 1 | 163ns | 157ns | | 2 | 163ns | 154ns | | 3 | 165ns | 155ns | | 4 | 167ns | 155ns | | 5 | 165ns | 155ns | | 6 | 163ns | 155ns | | 7 | 162ns | 155ns | | 8 | 162ns | 156ns | | 9 | 174ns | 155ns | | 10 | 162ns | 156ns | | 11 | 168ns | 155ns | | 12 | 169ns | 156ns | | 13 | 162ns | 155ns | | 14 | 169ns | 155ns | | 15 | 162ns | 154ns | | 16 | 163ns | 155ns | | 17 | 162ns | 154ns | | 18 | 166ns | 154ns | | 19 | 165ns | 154ns | | 20 | 165ns | 154ns | +----------+---------------+-------------------+ As we can see, for every time, bpf __ffs64() costs around 165ns, and kfunc bpf_ffs64() costs around 155ns. It seems that kfunc bpf_ffs64() saves 10ns for every time. If there is 1m PPS on the gateway, kfunc bpf_ffs64() will save much CPU resource. Links: [1] http://vger.kernel.org/lpc_net2018_talks/ebpf-firewall-paper-LPC.pdf [2] https://mbertrone.github.io/documents/21-Securing_Linux_with_a_Faster_and_Scalable_Iptables.pdf Signed-off-by: Leon Hwang <hffilwlqm@xxxxxxxxx> --- kernel/bpf/helpers.c | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c index bcb951a2ecf4b..4db48a6a04a90 100644 --- a/kernel/bpf/helpers.c +++ b/kernel/bpf/helpers.c @@ -23,6 +23,7 @@ #include <linux/btf_ids.h> #include <linux/bpf_mem_alloc.h> #include <linux/kasan.h> +#include <linux/bitops.h> #include "../../lib/kstrtox.h" @@ -2542,6 +2543,11 @@ __bpf_kfunc void bpf_throw(u64 cookie) WARN(1, "A call to BPF exception callback should never return\n"); } +__bpf_kfunc unsigned long bpf_ffs64(u64 word) +{ + return __ffs64(word); +} + __bpf_kfunc_end_defs(); BTF_SET8_START(generic_btf_ids) @@ -2573,6 +2579,7 @@ BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) #endif BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_throw) +BTF_ID_FLAGS(func, bpf_ffs64) BTF_SET8_END(generic_btf_ids) static const struct btf_kfunc_id_set generic_kfunc_set = { -- 2.42.1