Re: [PATCH bpf-next 01/13] bpf: generalize reg_set_min_max() to handle non-const register comparisons

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Thu, Nov 02, 2023 at 05:08:10PM -0700, Andrii Nakryiko wrote:
> Generalize bounds adjustment logic of reg_set_min_max() to handle not
> just register vs constant case, but in general any register vs any
> register cases. For most of the operations it's trivial extension based
> on range vs range comparison logic, we just need to properly pick
> min/max of a range to compare against min/max of the other range.
> 
> For BPF_JSET we keep the original capabilities, just make sure JSET is
> integrated in the common framework. This is manifested in the
> internal-only BPF_KSET + BPF_X "opcode" to allow for simpler and more
                    ^ typo?

Two more comments below

> uniform rev_opcode() handling. See the code for details. This allows to
> reuse the same code exactly both for TRUE and FALSE branches without
> explicitly handling both conditions with custom code.
> 
> Note also that now we don't need a special handling of BPF_JEQ/BPF_JNE
> case none of the registers are constants. This is now just a normal
> generic case handled by reg_set_min_max().
> 
> To make tnum handling cleaner, tnum_with_subreg() helper is added, as
> that's a common operator when dealing with 32-bit subregister bounds.
> This keeps the overall logic much less noisy when it comes to tnums.
> 
> Signed-off-by: Andrii Nakryiko <andrii@xxxxxxxxxx>
> ---
>  include/linux/tnum.h  |   4 +
>  kernel/bpf/tnum.c     |   7 +-
>  kernel/bpf/verifier.c | 327 ++++++++++++++++++++----------------------
>  3 files changed, 165 insertions(+), 173 deletions(-)
> 
> diff --git a/include/linux/tnum.h b/include/linux/tnum.h
> index 1c3948a1d6ad..3c13240077b8 100644
> --- a/include/linux/tnum.h
> +++ b/include/linux/tnum.h
> @@ -106,6 +106,10 @@ int tnum_sbin(char *str, size_t size, struct tnum a);
>  struct tnum tnum_subreg(struct tnum a);
>  /* Returns the tnum with the lower 32-bit subreg cleared */
>  struct tnum tnum_clear_subreg(struct tnum a);
> +/* Returns the tnum with the lower 32-bit subreg in *reg* set to the lower
> + * 32-bit subreg in *subreg*
> + */
> +struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg);
>  /* Returns the tnum with the lower 32-bit subreg set to value */
>  struct tnum tnum_const_subreg(struct tnum a, u32 value);
>  /* Returns true if 32-bit subreg @a is a known constant*/
> diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c
> index 3d7127f439a1..f4c91c9b27d7 100644
> --- a/kernel/bpf/tnum.c
> +++ b/kernel/bpf/tnum.c
> @@ -208,7 +208,12 @@ struct tnum tnum_clear_subreg(struct tnum a)
>  	return tnum_lshift(tnum_rshift(a, 32), 32);
>  }
>  
> +struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg)
> +{
> +	return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg));
> +}
> +
>  struct tnum tnum_const_subreg(struct tnum a, u32 value)
>  {
> -	return tnum_or(tnum_clear_subreg(a), tnum_const(value));
> +	return tnum_with_subreg(a, tnum_const(value));
>  }
> diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
> index 2197385d91dc..52934080042c 100644
> --- a/kernel/bpf/verifier.c
> +++ b/kernel/bpf/verifier.c
> @@ -14379,218 +14379,211 @@ static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg
>  	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
>  }
>  
> -/* Adjusts the register min/max values in the case that the dst_reg and
> - * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
> - * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
> - * Technically we can do similar adjustments for pointers to the same object,
> - * but we don't support that right now.
> +/* Opcode that corresponds to a *false* branch condition.
> + * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
>   */
> -static void reg_set_min_max(struct bpf_reg_state *true_reg1,
> -			    struct bpf_reg_state *true_reg2,
> -			    struct bpf_reg_state *false_reg1,
> -			    struct bpf_reg_state *false_reg2,
> -			    u8 opcode, bool is_jmp32)
> +static u8 rev_opcode(u8 opcode)

Nit: rev_opcode and flip_opcode seems like a possible source of confusing
down the line. Flip and reverse are often interchangable, i.e. "flip the
order" and "reverse the order" is the same thing.

Maybe "neg_opcode" or "neg_cond_opcode"?

Or do it the otherway around, keep rev_opcode but rename flip_opcode.

One more comment about BPF_JSET below

>  {
> -	struct tnum false_32off, false_64off;
> -	struct tnum true_32off, true_64off;
> -	u64 uval;
> -	u32 uval32;
> -	s64 sval;
> -	s32 sval32;
> -
> -	/* If either register is a pointer, we can't learn anything about its
> -	 * variable offset from the compare (unless they were a pointer into
> -	 * the same object, but we don't bother with that).
> +	switch (opcode) {
> +	case BPF_JEQ:		return BPF_JNE;
> +	case BPF_JNE:		return BPF_JEQ;
> +	/* JSET doesn't have it's reverse opcode in BPF, so add
> +	 * BPF_X flag to denote the reverse of that operation
>  	 */
> -	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
> -		return;
> -
> -	/* we expect right-hand registers (src ones) to be constants, for now */
> -	if (!is_reg_const(false_reg2, is_jmp32)) {
> -		opcode = flip_opcode(opcode);
> -		swap(true_reg1, true_reg2);
> -		swap(false_reg1, false_reg2);
> +	case BPF_JSET:		return BPF_JSET | BPF_X;
> +	case BPF_JSET | BPF_X:	return BPF_JSET;
> +	case BPF_JGE:		return BPF_JLT;
> +	case BPF_JGT:		return BPF_JLE;
> +	case BPF_JLE:		return BPF_JGT;
> +	case BPF_JLT:		return BPF_JGE;
> +	case BPF_JSGE:		return BPF_JSLT;
> +	case BPF_JSGT:		return BPF_JSLE;
> +	case BPF_JSLE:		return BPF_JSGT;
> +	case BPF_JSLT:		return BPF_JSGE;
> +	default:		return 0;
>  	}
> -	if (!is_reg_const(false_reg2, is_jmp32))
> -		return;
> +}
>  
> -	false_32off = tnum_subreg(false_reg1->var_off);
> -	false_64off = false_reg1->var_off;
> -	true_32off = tnum_subreg(true_reg1->var_off);
> -	true_64off = true_reg1->var_off;
> -	uval = false_reg2->var_off.value;
> -	uval32 = (u32)tnum_subreg(false_reg2->var_off).value;
> -	sval = (s64)uval;
> -	sval32 = (s32)uval32;
> +/* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
> +static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
> +				u8 opcode, bool is_jmp32)
> +{
> +	struct tnum t;
>  
>  	switch (opcode) {
> -	/* JEQ/JNE comparison doesn't change the register equivalence.
> -	 *
> -	 * r1 = r2;
> -	 * if (r1 == 42) goto label;
> -	 * ...
> -	 * label: // here both r1 and r2 are known to be 42.
> -	 *
> -	 * Hence when marking register as known preserve it's ID.
> -	 */
>  	case BPF_JEQ:
>  		if (is_jmp32) {
> -			__mark_reg32_known(true_reg1, uval32);
> -			true_32off = tnum_subreg(true_reg1->var_off);
> +			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
> +			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
> +			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
> +			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
> +			reg2->u32_min_value = reg1->u32_min_value;
> +			reg2->u32_max_value = reg1->u32_max_value;
> +			reg2->s32_min_value = reg1->s32_min_value;
> +			reg2->s32_max_value = reg1->s32_max_value;
> +
> +			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
> +			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
> +			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
>  		} else {
> -			___mark_reg_known(true_reg1, uval);
> -			true_64off = true_reg1->var_off;
> +			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
> +			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
> +			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
> +			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
> +			reg2->umin_value = reg1->umin_value;
> +			reg2->umax_value = reg1->umax_value;
> +			reg2->smin_value = reg1->smin_value;
> +			reg2->smax_value = reg1->smax_value;
> +
> +			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
> +			reg2->var_off = reg1->var_off;
>  		}
>  		break;
>  	case BPF_JNE:
> +		/* we don't derive any new information for inequality yet */
> +		break;
> +	case BPF_JSET:
> +	case BPF_JSET | BPF_X: { /* BPF_JSET and its reverse, see rev_opcode() */
> +		u64 val;
> +
> +		if (!is_reg_const(reg2, is_jmp32))
> +			swap(reg1, reg2);
> +		if (!is_reg_const(reg2, is_jmp32))
> +			break;
> +
> +		val = reg_const_value(reg2, is_jmp32);
> +		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
> +		 * requires single bit to learn something useful. E.g., if we
> +		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
> +		 * are actually set? We can learn something definite only if
> +		 * it's a single-bit value to begin with.
> +		 *
> +		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
> +		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
> +		 * bit 1 is set, which we can readily use in adjustments.
> +		 */
> +		if (!(opcode & BPF_X) && !is_power_of_2(val))
> +			break;
> +
>  		if (is_jmp32) {
> -			__mark_reg32_known(false_reg1, uval32);
> -			false_32off = tnum_subreg(false_reg1->var_off);
> +			if (opcode & BPF_X)
> +				t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
> +			else
> +				t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
> +			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
>  		} else {
> -			___mark_reg_known(false_reg1, uval);
> -			false_64off = false_reg1->var_off;
> +			if (opcode & BPF_X)
> +				reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
> +			else
> +				reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
>  		}
>  		break;

Since you're already adding a tnum helper, I think we can add one more
for BPF_JSET here

	struct tnum tnum_neg(struct tnum a)
	{
		return TNUM(~a.value, a.mask);
	}

So instead of getting a value out of tnum then putting the value back
into tnum again

    u64 val;
    val = reg_const_value(reg2, is_jmp32);
    tnum_ops(..., tnum_const(val or ~val);

Keep the value in tnum and process it as-is if possible

    tnum_ops(..., reg2->var_off or tnum_neg(reg2->var_off));

And with that hopefully make this fragment short enough that we don't
mind duplicate a bit of code to seperate the BPF_JSET case from the
BPF_JSET | BPF_X case. IMO a conditional is_power_of_2 check followed by
two level of branching is a bit too much to follow, it is better to have
them seperated just like how you're doing it for the others already.

I.e. something like the follow

	case BPF_JSET: {
		if (!is_reg_const(reg2, is_jmp32))
			swap(reg1, reg2);
		if (!is_reg_const(reg2, is_jmp32))
			break;
		/* comment */
		if (!is_power_of_2(reg_const_value(reg2, is_jmp32))
			break;

		if (is_jmp32) {
			t = tnum_or(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
		} else {
			reg1->var_off = tnum_or(reg1->var_off, reg2->var_off);
		}
		break;
	}
	case BPF_JSET | BPF_X: {
		if (!is_reg_const(reg2, is_jmp32))
			swap(reg1, reg2);
		if (!is_reg_const(reg2, is_jmp32))
			break;

		if (is_jmp32) {
			/* a slightly long line ... */
			t = tnum_and(tnum_subreg(reg1->var_off), tnum_neg(tnum_subreg(reg2->var_off)));
			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
		} else {
			reg1->var_off = tnum_and(reg1->var_off, tnum_neg(reg2->var_off));
		}
		break;
	}

> ...




[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux