On Mon, Oct 30, 2023 at 7:12 PM Alexei Starovoitov <alexei.starovoitov@xxxxxxxxx> wrote: > > On Fri, Oct 27, 2023 at 11:13:42AM -0700, Andrii Nakryiko wrote: > > Generalize is_branch_taken logic for SCALAR_VALUE register to handle > > cases when both registers are not constants. Previously supported > > <range> vs <scalar> cases are a natural subset of more generic <range> > > vs <range> set of cases. > > > > Generalized logic relies on straightforward segment intersection checks. > > > > Signed-off-by: Andrii Nakryiko <andrii@xxxxxxxxxx> > > --- > > kernel/bpf/verifier.c | 104 ++++++++++++++++++++++++++---------------- > > 1 file changed, 64 insertions(+), 40 deletions(-) > > > > diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c > > index 4c974296127b..f18a8247e5e2 100644 > > --- a/kernel/bpf/verifier.c > > +++ b/kernel/bpf/verifier.c > > @@ -14189,82 +14189,105 @@ static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_sta > > u8 opcode, bool is_jmp32) > > { > > struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; > > + struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; > > u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; > > u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; > > s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; > > s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; > > - u64 val = is_jmp32 ? (u32)tnum_subreg(reg2->var_off).value : reg2->var_off.value; > > - s64 sval = is_jmp32 ? (s32)val : (s64)val; > > + u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; > > + u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; > > + s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; > > + s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; > > > > switch (opcode) { > > case BPF_JEQ: > > - if (tnum_is_const(t1)) > > - return !!tnum_equals_const(t1, val); > > - else if (val < umin1 || val > umax1) > > + /* const tnums */ > > + if (tnum_is_const(t1) && tnum_is_const(t2)) > > + return t1.value == t2.value; > > + /* const ranges */ > > + if (umin1 == umax1 && umin2 == umax2) > > + return umin1 == umin2; > > I don't follow this logic. > umin1 == umax1 means that it's a single constant and > it should have been handled by earlier tnum_is_const check. I think you follow the logic, you just think it's redundant. Yes, it's basically the same as if (tnum_is_const(t1) && tnum_is_const(t2)) return t1.value == t2.value; but based on ranges. I didn't feel comfortable to assume that if umin1 == umax1 then tnum_is_const(t1) will always be true. At worst we'll perform one redundant check. In short, I don't trust tnum to be as precise as umin/umax and other ranges. > > > + if (smin1 == smax1 && smin2 == smax2) > > + return umin1 == umin2; > > here it's even more confusing. smin == smax -> singel const, > but then compare umin1 with umin2 ?! Eagle eyes! Typo, sorry :( it should be `smin1 == smin2`, of course. What saves us is reg_bounds_sync(), and if we have umin1 == umax1 then we'll have also smin1 == smax1 == umin1 == umax1 (and corresponding relation for second register). But I fixed these typos in both BPF_JEQ and BPF_JNE branches. > > > + /* non-overlapping ranges */ > > + if (umin1 > umax2 || umax1 < umin2) > > return 0; > > - else if (sval < smin1 || sval > smax1) > > + if (smin1 > smax2 || smax1 < smin2) > > return 0; > > this part makes sense.