[PATCH v6 bpf-next 04/14] libbpf: implement BPF CO-RE offset relocation algorithm

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This patch implements the core logic for BPF CO-RE offsets relocations.
Every instruction that needs to be relocated has corresponding
bpf_offset_reloc as part of BTF.ext. Relocations are performed by trying
to match recorded "local" relocation spec against potentially many
compatible "target" types, creating corresponding spec. Details of the
algorithm are noted in corresponding comments in the code.

Signed-off-by: Andrii Nakryiko <andriin@xxxxxx>
Acked-by: Song Liu <songliubraving@xxxxxx>
---
 tools/lib/bpf/libbpf.c | 881 ++++++++++++++++++++++++++++++++++++++++-
 tools/lib/bpf/libbpf.h |   1 +
 2 files changed, 864 insertions(+), 18 deletions(-)

diff --git a/tools/lib/bpf/libbpf.c b/tools/lib/bpf/libbpf.c
index 8fc62b6b1cd6..3abf2dd1b3b5 100644
--- a/tools/lib/bpf/libbpf.c
+++ b/tools/lib/bpf/libbpf.c
@@ -38,6 +38,7 @@
 #include <sys/stat.h>
 #include <sys/types.h>
 #include <sys/vfs.h>
+#include <sys/utsname.h>
 #include <tools/libc_compat.h>
 #include <libelf.h>
 #include <gelf.h>
@@ -47,6 +48,7 @@
 #include "btf.h"
 #include "str_error.h"
 #include "libbpf_internal.h"
+#include "hashmap.h"
 
 #ifndef EM_BPF
 #define EM_BPF 247
@@ -1015,23 +1017,21 @@ static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
 	return 0;
 }
 
-static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf,
-						     __u32 id)
+static const struct btf_type *
+skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
 {
 	const struct btf_type *t = btf__type_by_id(btf, id);
 
-	while (true) {
-		switch (BTF_INFO_KIND(t->info)) {
-		case BTF_KIND_VOLATILE:
-		case BTF_KIND_CONST:
-		case BTF_KIND_RESTRICT:
-		case BTF_KIND_TYPEDEF:
-			t = btf__type_by_id(btf, t->type);
-			break;
-		default:
-			return t;
-		}
+	if (res_id)
+		*res_id = id;
+
+	while (btf_is_mod(t) || btf_is_typedef(t)) {
+		if (res_id)
+			*res_id = t->type;
+		t = btf__type_by_id(btf, t->type);
 	}
+
+	return t;
 }
 
 /*
@@ -1044,7 +1044,7 @@ static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf,
 static bool get_map_field_int(const char *map_name, const struct btf *btf,
 			      const struct btf_type *def,
 			      const struct btf_member *m, __u32 *res) {
-	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type);
+	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
 	const char *name = btf__name_by_offset(btf, m->name_off);
 	const struct btf_array *arr_info;
 	const struct btf_type *arr_t;
@@ -1110,7 +1110,7 @@ static int bpf_object__init_user_btf_map(struct bpf_object *obj,
 		return -EOPNOTSUPP;
 	}
 
-	def = skip_mods_and_typedefs(obj->btf, var->type);
+	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
 	if (!btf_is_struct(def)) {
 		pr_warning("map '%s': unexpected def kind %u.\n",
 			   map_name, btf_kind(var));
@@ -2290,6 +2290,844 @@ bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj,
 	return 0;
 }
 
+#define BPF_CORE_SPEC_MAX_LEN 64
+
+/* represents BPF CO-RE field or array element accessor */
+struct bpf_core_accessor {
+	__u32 type_id;		/* struct/union type or array element type */
+	__u32 idx;		/* field index or array index */
+	const char *name;	/* field name or NULL for array accessor */
+};
+
+struct bpf_core_spec {
+	const struct btf *btf;
+	/* high-level spec: named fields and array indices only */
+	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
+	/* high-level spec length */
+	int len;
+	/* raw, low-level spec: 1-to-1 with accessor spec string */
+	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
+	/* raw spec length */
+	int raw_len;
+	/* field byte offset represented by spec */
+	__u32 offset;
+};
+
+static bool str_is_empty(const char *s)
+{
+	return !s || !s[0];
+}
+
+/*
+ * Turn bpf_offset_reloc into a low- and high-level spec representation,
+ * validating correctness along the way, as well as calculating resulting
+ * field offset (in bytes), specified by accessor string. Low-level spec
+ * captures every single level of nestedness, including traversing anonymous
+ * struct/union members. High-level one only captures semantically meaningful
+ * "turning points": named fields and array indicies.
+ * E.g., for this case:
+ *
+ *   struct sample {
+ *       int __unimportant;
+ *       struct {
+ *           int __1;
+ *           int __2;
+ *           int a[7];
+ *       };
+ *   };
+ *
+ *   struct sample *s = ...;
+ *
+ *   int x = &s->a[3]; // access string = '0:1:2:3'
+ *
+ * Low-level spec has 1:1 mapping with each element of access string (it's
+ * just a parsed access string representation): [0, 1, 2, 3].
+ *
+ * High-level spec will capture only 3 points:
+ *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
+ *   - field 'a' access (corresponds to '2' in low-level spec);
+ *   - array element #3 access (corresponds to '3' in low-level spec).
+ *
+ */
+static int bpf_core_spec_parse(const struct btf *btf,
+			       __u32 type_id,
+			       const char *spec_str,
+			       struct bpf_core_spec *spec)
+{
+	int access_idx, parsed_len, i;
+	const struct btf_type *t;
+	const char *name;
+	__u32 id;
+	__s64 sz;
+
+	if (str_is_empty(spec_str) || *spec_str == ':')
+		return -EINVAL;
+
+	memset(spec, 0, sizeof(*spec));
+	spec->btf = btf;
+
+	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
+	while (*spec_str) {
+		if (*spec_str == ':')
+			++spec_str;
+		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
+			return -EINVAL;
+		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
+			return -E2BIG;
+		spec_str += parsed_len;
+		spec->raw_spec[spec->raw_len++] = access_idx;
+	}
+
+	if (spec->raw_len == 0)
+		return -EINVAL;
+
+	/* first spec value is always reloc type array index */
+	t = skip_mods_and_typedefs(btf, type_id, &id);
+	if (!t)
+		return -EINVAL;
+
+	access_idx = spec->raw_spec[0];
+	spec->spec[0].type_id = id;
+	spec->spec[0].idx = access_idx;
+	spec->len++;
+
+	sz = btf__resolve_size(btf, id);
+	if (sz < 0)
+		return sz;
+	spec->offset = access_idx * sz;
+
+	for (i = 1; i < spec->raw_len; i++) {
+		t = skip_mods_and_typedefs(btf, id, &id);
+		if (!t)
+			return -EINVAL;
+
+		access_idx = spec->raw_spec[i];
+
+		if (btf_is_composite(t)) {
+			const struct btf_member *m;
+			__u32 offset;
+
+			if (access_idx >= btf_vlen(t))
+				return -EINVAL;
+			if (btf_member_bitfield_size(t, access_idx))
+				return -EINVAL;
+
+			offset = btf_member_bit_offset(t, access_idx);
+			if (offset % 8)
+				return -EINVAL;
+			spec->offset += offset / 8;
+
+			m = btf_members(t) + access_idx;
+			if (m->name_off) {
+				name = btf__name_by_offset(btf, m->name_off);
+				if (str_is_empty(name))
+					return -EINVAL;
+
+				spec->spec[spec->len].type_id = id;
+				spec->spec[spec->len].idx = access_idx;
+				spec->spec[spec->len].name = name;
+				spec->len++;
+			}
+
+			id = m->type;
+		} else if (btf_is_array(t)) {
+			const struct btf_array *a = btf_array(t);
+
+			t = skip_mods_and_typedefs(btf, a->type, &id);
+			if (!t || access_idx >= a->nelems)
+				return -EINVAL;
+
+			spec->spec[spec->len].type_id = id;
+			spec->spec[spec->len].idx = access_idx;
+			spec->len++;
+
+			sz = btf__resolve_size(btf, id);
+			if (sz < 0)
+				return sz;
+			spec->offset += access_idx * sz;
+		} else {
+			pr_warning("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n",
+				   type_id, spec_str, i, id, btf_kind(t));
+			return -EINVAL;
+		}
+	}
+
+	return 0;
+}
+
+static bool bpf_core_is_flavor_sep(const char *s)
+{
+	/* check X___Y name pattern, where X and Y are not underscores */
+	return s[0] != '_' &&				      /* X */
+	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
+	       s[4] != '_';				      /* Y */
+}
+
+/* Given 'some_struct_name___with_flavor' return the length of a name prefix
+ * before last triple underscore. Struct name part after last triple
+ * underscore is ignored by BPF CO-RE relocation during relocation matching.
+ */
+static size_t bpf_core_essential_name_len(const char *name)
+{
+	size_t n = strlen(name);
+	int i;
+
+	for (i = n - 5; i >= 0; i--) {
+		if (bpf_core_is_flavor_sep(name + i))
+			return i + 1;
+	}
+	return n;
+}
+
+/* dynamically sized list of type IDs */
+struct ids_vec {
+	__u32 *data;
+	int len;
+};
+
+static void bpf_core_free_cands(struct ids_vec *cand_ids)
+{
+	free(cand_ids->data);
+	free(cand_ids);
+}
+
+static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
+					   __u32 local_type_id,
+					   const struct btf *targ_btf)
+{
+	size_t local_essent_len, targ_essent_len;
+	const char *local_name, *targ_name;
+	const struct btf_type *t;
+	struct ids_vec *cand_ids;
+	__u32 *new_ids;
+	int i, err, n;
+
+	t = btf__type_by_id(local_btf, local_type_id);
+	if (!t)
+		return ERR_PTR(-EINVAL);
+
+	local_name = btf__name_by_offset(local_btf, t->name_off);
+	if (str_is_empty(local_name))
+		return ERR_PTR(-EINVAL);
+	local_essent_len = bpf_core_essential_name_len(local_name);
+
+	cand_ids = calloc(1, sizeof(*cand_ids));
+	if (!cand_ids)
+		return ERR_PTR(-ENOMEM);
+
+	n = btf__get_nr_types(targ_btf);
+	for (i = 1; i <= n; i++) {
+		t = btf__type_by_id(targ_btf, i);
+		targ_name = btf__name_by_offset(targ_btf, t->name_off);
+		if (str_is_empty(targ_name))
+			continue;
+
+		targ_essent_len = bpf_core_essential_name_len(targ_name);
+		if (targ_essent_len != local_essent_len)
+			continue;
+
+		if (strncmp(local_name, targ_name, local_essent_len) == 0) {
+			pr_debug("[%d] %s: found candidate [%d] %s\n",
+				 local_type_id, local_name, i, targ_name);
+			new_ids = realloc(cand_ids->data, cand_ids->len + 1);
+			if (!new_ids) {
+				err = -ENOMEM;
+				goto err_out;
+			}
+			cand_ids->data = new_ids;
+			cand_ids->data[cand_ids->len++] = i;
+		}
+	}
+	return cand_ids;
+err_out:
+	bpf_core_free_cands(cand_ids);
+	return ERR_PTR(err);
+}
+
+/* Check two types for compatibility, skipping const/volatile/restrict and
+ * typedefs, to ensure we are relocating offset to the compatible entities:
+ *   - any two STRUCTs/UNIONs are compatible and can be mixed;
+ *   - any two FWDs are compatible;
+ *   - any two PTRs are always compatible;
+ *   - for ENUMs, check sizes, names are ignored;
+ *   - for INT, size and bitness should match, signedness is ignored;
+ *   - for ARRAY, dimensionality is ignored, element types are checked for
+ *     compatibility recursively;
+ *   - everything else shouldn't be ever a target of relocation.
+ * These rules are not set in stone and probably will be adjusted as we get
+ * more experience with using BPF CO-RE relocations.
+ */
+static int bpf_core_fields_are_compat(const struct btf *local_btf,
+				      __u32 local_id,
+				      const struct btf *targ_btf,
+				      __u32 targ_id)
+{
+	const struct btf_type *local_type, *targ_type;
+
+recur:
+	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
+	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
+	if (!local_type || !targ_type)
+		return -EINVAL;
+
+	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
+		return 1;
+	if (btf_kind(local_type) != btf_kind(targ_type))
+		return 0;
+
+	switch (btf_kind(local_type)) {
+	case BTF_KIND_FWD:
+	case BTF_KIND_PTR:
+		return 1;
+	case BTF_KIND_ENUM:
+		return local_type->size == targ_type->size;
+	case BTF_KIND_INT:
+		return btf_int_offset(local_type) == 0 &&
+		       btf_int_offset(targ_type) == 0 &&
+		       local_type->size == targ_type->size &&
+		       btf_int_bits(local_type) == btf_int_bits(targ_type);
+	case BTF_KIND_ARRAY:
+		local_id = btf_array(local_type)->type;
+		targ_id = btf_array(targ_type)->type;
+		goto recur;
+	default:
+		pr_warning("unexpected kind %d relocated, local [%d], target [%d]\n",
+			   btf_kind(local_type), local_id, targ_id);
+		return 0;
+	}
+}
+
+/*
+ * Given single high-level named field accessor in local type, find
+ * corresponding high-level accessor for a target type. Along the way,
+ * maintain low-level spec for target as well. Also keep updating target
+ * offset.
+ *
+ * Searching is performed through recursive exhaustive enumeration of all
+ * fields of a struct/union. If there are any anonymous (embedded)
+ * structs/unions, they are recursively searched as well. If field with
+ * desired name is found, check compatibility between local and target types,
+ * before returning result.
+ *
+ * 1 is returned, if field is found.
+ * 0 is returned if no compatible field is found.
+ * <0 is returned on error.
+ */
+static int bpf_core_match_member(const struct btf *local_btf,
+				 const struct bpf_core_accessor *local_acc,
+				 const struct btf *targ_btf,
+				 __u32 targ_id,
+				 struct bpf_core_spec *spec,
+				 __u32 *next_targ_id)
+{
+	const struct btf_type *local_type, *targ_type;
+	const struct btf_member *local_member, *m;
+	const char *local_name, *targ_name;
+	__u32 local_id;
+	int i, n, found;
+
+	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
+	if (!targ_type)
+		return -EINVAL;
+	if (!btf_is_composite(targ_type))
+		return 0;
+
+	local_id = local_acc->type_id;
+	local_type = btf__type_by_id(local_btf, local_id);
+	local_member = btf_members(local_type) + local_acc->idx;
+	local_name = btf__name_by_offset(local_btf, local_member->name_off);
+
+	n = btf_vlen(targ_type);
+	m = btf_members(targ_type);
+	for (i = 0; i < n; i++, m++) {
+		__u32 offset;
+
+		/* bitfield relocations not supported */
+		if (btf_member_bitfield_size(targ_type, i))
+			continue;
+		offset = btf_member_bit_offset(targ_type, i);
+		if (offset % 8)
+			continue;
+
+		/* too deep struct/union/array nesting */
+		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
+			return -E2BIG;
+
+		/* speculate this member will be the good one */
+		spec->offset += offset / 8;
+		spec->raw_spec[spec->raw_len++] = i;
+
+		targ_name = btf__name_by_offset(targ_btf, m->name_off);
+		if (str_is_empty(targ_name)) {
+			/* embedded struct/union, we need to go deeper */
+			found = bpf_core_match_member(local_btf, local_acc,
+						      targ_btf, m->type,
+						      spec, next_targ_id);
+			if (found) /* either found or error */
+				return found;
+		} else if (strcmp(local_name, targ_name) == 0) {
+			/* matching named field */
+			struct bpf_core_accessor *targ_acc;
+
+			targ_acc = &spec->spec[spec->len++];
+			targ_acc->type_id = targ_id;
+			targ_acc->idx = i;
+			targ_acc->name = targ_name;
+
+			*next_targ_id = m->type;
+			found = bpf_core_fields_are_compat(local_btf,
+							   local_member->type,
+							   targ_btf, m->type);
+			if (!found)
+				spec->len--; /* pop accessor */
+			return found;
+		}
+		/* member turned out not to be what we looked for */
+		spec->offset -= offset / 8;
+		spec->raw_len--;
+	}
+
+	return 0;
+}
+
+/*
+ * Try to match local spec to a target type and, if successful, produce full
+ * target spec (high-level, low-level + offset).
+ */
+static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
+			       const struct btf *targ_btf, __u32 targ_id,
+			       struct bpf_core_spec *targ_spec)
+{
+	const struct btf_type *targ_type;
+	const struct bpf_core_accessor *local_acc;
+	struct bpf_core_accessor *targ_acc;
+	int i, sz, matched;
+
+	memset(targ_spec, 0, sizeof(*targ_spec));
+	targ_spec->btf = targ_btf;
+
+	local_acc = &local_spec->spec[0];
+	targ_acc = &targ_spec->spec[0];
+
+	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
+		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
+						   &targ_id);
+		if (!targ_type)
+			return -EINVAL;
+
+		if (local_acc->name) {
+			matched = bpf_core_match_member(local_spec->btf,
+							local_acc,
+							targ_btf, targ_id,
+							targ_spec, &targ_id);
+			if (matched <= 0)
+				return matched;
+		} else {
+			/* for i=0, targ_id is already treated as array element
+			 * type (because it's the original struct), for others
+			 * we should find array element type first
+			 */
+			if (i > 0) {
+				const struct btf_array *a;
+
+				if (!btf_is_array(targ_type))
+					return 0;
+
+				a = btf_array(targ_type);
+				if (local_acc->idx >= a->nelems)
+					return 0;
+				if (!skip_mods_and_typedefs(targ_btf, a->type,
+							    &targ_id))
+					return -EINVAL;
+			}
+
+			/* too deep struct/union/array nesting */
+			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
+				return -E2BIG;
+
+			targ_acc->type_id = targ_id;
+			targ_acc->idx = local_acc->idx;
+			targ_acc->name = NULL;
+			targ_spec->len++;
+			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
+			targ_spec->raw_len++;
+
+			sz = btf__resolve_size(targ_btf, targ_id);
+			if (sz < 0)
+				return sz;
+			targ_spec->offset += local_acc->idx * sz;
+		}
+	}
+
+	return 1;
+}
+
+/*
+ * Patch relocatable BPF instruction.
+ * Expected insn->imm value is provided for validation, as well as the new
+ * relocated value.
+ *
+ * Currently three kinds of BPF instructions are supported:
+ * 1. rX = <imm> (assignment with immediate operand);
+ * 2. rX += <imm> (arithmetic operations with immediate operand);
+ * 3. *(rX) = <imm> (indirect memory assignment with immediate operand).
+ *
+ * If actual insn->imm value is wrong, bail out.
+ */
+static int bpf_core_reloc_insn(struct bpf_program *prog, int insn_off,
+			       __u32 orig_off, __u32 new_off)
+{
+	struct bpf_insn *insn;
+	int insn_idx;
+	__u8 class;
+
+	if (insn_off % sizeof(struct bpf_insn))
+		return -EINVAL;
+	insn_idx = insn_off / sizeof(struct bpf_insn);
+
+	insn = &prog->insns[insn_idx];
+	class = BPF_CLASS(insn->code);
+
+	if (class == BPF_ALU || class == BPF_ALU64) {
+		if (BPF_SRC(insn->code) != BPF_K)
+			return -EINVAL;
+		if (insn->imm != orig_off)
+			return -EINVAL;
+		insn->imm = new_off;
+		pr_debug("prog '%s': patched insn #%d (ALU/ALU64) imm %d -> %d\n",
+			 bpf_program__title(prog, false),
+			 insn_idx, orig_off, new_off);
+	} else {
+		pr_warning("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n",
+			   bpf_program__title(prog, false),
+			   insn_idx, insn->code, insn->src_reg, insn->dst_reg,
+			   insn->off, insn->imm);
+		return -EINVAL;
+	}
+	return 0;
+}
+
+/*
+ * Probe few well-known locations for vmlinux kernel image and try to load BTF
+ * data out of it to use for target BTF.
+ */
+static struct btf *bpf_core_find_kernel_btf(void)
+{
+	const char *locations[] = {
+		"/lib/modules/%1$s/vmlinux-%1$s",
+		"/usr/lib/modules/%1$s/kernel/vmlinux",
+	};
+	char path[PATH_MAX + 1];
+	struct utsname buf;
+	struct btf *btf;
+	int i;
+
+	uname(&buf);
+
+	for (i = 0; i < ARRAY_SIZE(locations); i++) {
+		snprintf(path, PATH_MAX, locations[i], buf.release);
+
+		if (access(path, R_OK))
+			continue;
+
+		btf = btf__parse_elf(path, NULL);
+		pr_debug("kernel BTF load from '%s': %ld\n",
+			 path, PTR_ERR(btf));
+		if (IS_ERR(btf))
+			continue;
+
+		return btf;
+	}
+
+	pr_warning("failed to find valid kernel BTF\n");
+	return ERR_PTR(-ESRCH);
+}
+
+/* Output spec definition in the format:
+ * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
+ * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
+ */
+static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
+{
+	const struct btf_type *t;
+	const char *s;
+	__u32 type_id;
+	int i;
+
+	type_id = spec->spec[0].type_id;
+	t = btf__type_by_id(spec->btf, type_id);
+	s = btf__name_by_offset(spec->btf, t->name_off);
+	libbpf_print(level, "[%u] %s + ", type_id, s);
+
+	for (i = 0; i < spec->raw_len; i++)
+		libbpf_print(level, "%d%s", spec->raw_spec[i],
+			     i == spec->raw_len - 1 ? " => " : ":");
+
+	libbpf_print(level, "%u @ &x", spec->offset);
+
+	for (i = 0; i < spec->len; i++) {
+		if (spec->spec[i].name)
+			libbpf_print(level, ".%s", spec->spec[i].name);
+		else
+			libbpf_print(level, "[%u]", spec->spec[i].idx);
+	}
+
+}
+
+static size_t bpf_core_hash_fn(const void *key, void *ctx)
+{
+	return (size_t)key;
+}
+
+static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
+{
+	return k1 == k2;
+}
+
+static void *u32_as_hash_key(__u32 x)
+{
+	return (void *)(uintptr_t)x;
+}
+
+/*
+ * CO-RE relocate single instruction.
+ *
+ * The outline and important points of the algorithm:
+ * 1. For given local type, find corresponding candidate target types.
+ *    Candidate type is a type with the same "essential" name, ignoring
+ *    everything after last triple underscore (___). E.g., `sample`,
+ *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
+ *    for each other. Names with triple underscore are referred to as
+ *    "flavors" and are useful, among other things, to allow to
+ *    specify/support incompatible variations of the same kernel struct, which
+ *    might differ between different kernel versions and/or build
+ *    configurations.
+ *
+ *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
+ *    converter, when deduplicated BTF of a kernel still contains more than
+ *    one different types with the same name. In that case, ___2, ___3, etc
+ *    are appended starting from second name conflict. But start flavors are
+ *    also useful to be defined "locally", in BPF program, to extract same
+ *    data from incompatible changes between different kernel
+ *    versions/configurations. For instance, to handle field renames between
+ *    kernel versions, one can use two flavors of the struct name with the
+ *    same common name and use conditional relocations to extract that field,
+ *    depending on target kernel version.
+ * 2. For each candidate type, try to match local specification to this
+ *    candidate target type. Matching involves finding corresponding
+ *    high-level spec accessors, meaning that all named fields should match,
+ *    as well as all array accesses should be within the actual bounds. Also,
+ *    types should be compatible (see bpf_core_fields_are_compat for details).
+ * 3. It is supported and expected that there might be multiple flavors
+ *    matching the spec. As long as all the specs resolve to the same set of
+ *    offsets across all candidates, there is not error. If there is any
+ *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
+ *    imprefection of BTF deduplication, which can cause slight duplication of
+ *    the same BTF type, if some directly or indirectly referenced (by
+ *    pointer) type gets resolved to different actual types in different
+ *    object files. If such situation occurs, deduplicated BTF will end up
+ *    with two (or more) structurally identical types, which differ only in
+ *    types they refer to through pointer. This should be OK in most cases and
+ *    is not an error.
+ * 4. Candidate types search is performed by linearly scanning through all
+ *    types in target BTF. It is anticipated that this is overall more
+ *    efficient memory-wise and not significantly worse (if not better)
+ *    CPU-wise compared to prebuilding a map from all local type names to
+ *    a list of candidate type names. It's also sped up by caching resolved
+ *    list of matching candidates per each local "root" type ID, that has at
+ *    least one bpf_offset_reloc associated with it. This list is shared
+ *    between multiple relocations for the same type ID and is updated as some
+ *    of the candidates are pruned due to structural incompatibility.
+ */
+static int bpf_core_reloc_offset(struct bpf_program *prog,
+				 const struct bpf_offset_reloc *relo,
+				 int relo_idx,
+				 const struct btf *local_btf,
+				 const struct btf *targ_btf,
+				 struct hashmap *cand_cache)
+{
+	const char *prog_name = bpf_program__title(prog, false);
+	struct bpf_core_spec local_spec, cand_spec, targ_spec;
+	const void *type_key = u32_as_hash_key(relo->type_id);
+	const struct btf_type *local_type, *cand_type;
+	const char *local_name, *cand_name;
+	struct ids_vec *cand_ids;
+	__u32 local_id, cand_id;
+	const char *spec_str;
+	int i, j, err;
+
+	local_id = relo->type_id;
+	local_type = btf__type_by_id(local_btf, local_id);
+	if (!local_type)
+		return -EINVAL;
+
+	local_name = btf__name_by_offset(local_btf, local_type->name_off);
+	if (str_is_empty(local_name))
+		return -EINVAL;
+
+	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
+	if (str_is_empty(spec_str))
+		return -EINVAL;
+
+	err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec);
+	if (err) {
+		pr_warning("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n",
+			   prog_name, relo_idx, local_id, local_name, spec_str,
+			   err);
+		return -EINVAL;
+	}
+
+	pr_debug("prog '%s': relo #%d: spec is ", prog_name, relo_idx);
+	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
+	libbpf_print(LIBBPF_DEBUG, "\n");
+
+	if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
+		cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
+		if (IS_ERR(cand_ids)) {
+			pr_warning("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld",
+				   prog_name, relo_idx, local_id, local_name,
+				   PTR_ERR(cand_ids));
+			return PTR_ERR(cand_ids);
+		}
+		err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
+		if (err) {
+			bpf_core_free_cands(cand_ids);
+			return err;
+		}
+	}
+
+	for (i = 0, j = 0; i < cand_ids->len; i++) {
+		cand_id = cand_ids->data[i];
+		cand_type = btf__type_by_id(targ_btf, cand_id);
+		cand_name = btf__name_by_offset(targ_btf, cand_type->name_off);
+
+		err = bpf_core_spec_match(&local_spec, targ_btf,
+					  cand_id, &cand_spec);
+		pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ",
+			 prog_name, relo_idx, i, cand_name);
+		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
+		libbpf_print(LIBBPF_DEBUG, ": %d\n", err);
+		if (err < 0) {
+			pr_warning("prog '%s': relo #%d: matching error: %d\n",
+				   prog_name, relo_idx, err);
+			return err;
+		}
+		if (err == 0)
+			continue;
+
+		if (j == 0) {
+			targ_spec = cand_spec;
+		} else if (cand_spec.offset != targ_spec.offset) {
+			/* if there are many candidates, they should all
+			 * resolve to the same offset
+			 */
+			pr_warning("prog '%s': relo #%d: offset ambiguity: %u != %u\n",
+				   prog_name, relo_idx, cand_spec.offset,
+				   targ_spec.offset);
+			return -EINVAL;
+		}
+
+		cand_ids->data[j++] = cand_spec.spec[0].type_id;
+	}
+
+	cand_ids->len = j;
+	if (cand_ids->len == 0) {
+		pr_warning("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n",
+			   prog_name, relo_idx, local_id, local_name, spec_str);
+		return -ESRCH;
+	}
+
+	err = bpf_core_reloc_insn(prog, relo->insn_off,
+				  local_spec.offset, targ_spec.offset);
+	if (err) {
+		pr_warning("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
+			   prog_name, relo_idx, relo->insn_off, err);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int
+bpf_core_reloc_offsets(struct bpf_object *obj, const char *targ_btf_path)
+{
+	const struct btf_ext_info_sec *sec;
+	const struct bpf_offset_reloc *rec;
+	const struct btf_ext_info *seg;
+	struct hashmap_entry *entry;
+	struct hashmap *cand_cache = NULL;
+	struct bpf_program *prog;
+	struct btf *targ_btf;
+	const char *sec_name;
+	int i, err = 0;
+
+	if (targ_btf_path)
+		targ_btf = btf__parse_elf(targ_btf_path, NULL);
+	else
+		targ_btf = bpf_core_find_kernel_btf();
+	if (IS_ERR(targ_btf)) {
+		pr_warning("failed to get target BTF: %ld\n",
+			   PTR_ERR(targ_btf));
+		return PTR_ERR(targ_btf);
+	}
+
+	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
+	if (IS_ERR(cand_cache)) {
+		err = PTR_ERR(cand_cache);
+		goto out;
+	}
+
+	seg = &obj->btf_ext->offset_reloc_info;
+	for_each_btf_ext_sec(seg, sec) {
+		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
+		if (str_is_empty(sec_name)) {
+			err = -EINVAL;
+			goto out;
+		}
+		prog = bpf_object__find_program_by_title(obj, sec_name);
+		if (!prog) {
+			pr_warning("failed to find program '%s' for CO-RE offset relocation\n",
+				   sec_name);
+			err = -EINVAL;
+			goto out;
+		}
+
+		pr_debug("prog '%s': performing %d CO-RE offset relocs\n",
+			 sec_name, sec->num_info);
+
+		for_each_btf_ext_rec(seg, sec, i, rec) {
+			err = bpf_core_reloc_offset(prog, rec, i, obj->btf,
+						    targ_btf, cand_cache);
+			if (err) {
+				pr_warning("prog '%s': relo #%d: failed to relocate: %d\n",
+					   sec_name, i, err);
+				goto out;
+			}
+		}
+	}
+
+out:
+	btf__free(targ_btf);
+	if (!IS_ERR_OR_NULL(cand_cache)) {
+		hashmap__for_each_entry(cand_cache, entry, i) {
+			bpf_core_free_cands(entry->value);
+		}
+		hashmap__free(cand_cache);
+	}
+	return err;
+}
+
+static int
+bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
+{
+	int err = 0;
+
+	if (obj->btf_ext->offset_reloc_info.len)
+		err = bpf_core_reloc_offsets(obj, targ_btf_path);
+
+	return err;
+}
+
 static int
 bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj,
 			struct reloc_desc *relo)
@@ -2397,14 +3235,21 @@ bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj)
 	return 0;
 }
 
-
 static int
-bpf_object__relocate(struct bpf_object *obj)
+bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
 {
 	struct bpf_program *prog;
 	size_t i;
 	int err;
 
+	if (obj->btf_ext) {
+		err = bpf_object__relocate_core(obj, targ_btf_path);
+		if (err) {
+			pr_warning("failed to perform CO-RE relocations: %d\n",
+				   err);
+			return err;
+		}
+	}
 	for (i = 0; i < obj->nr_programs; i++) {
 		prog = &obj->programs[i];
 
@@ -2805,7 +3650,7 @@ int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
 	obj->loaded = true;
 
 	CHECK_ERR(bpf_object__create_maps(obj), err, out);
-	CHECK_ERR(bpf_object__relocate(obj), err, out);
+	CHECK_ERR(bpf_object__relocate(obj, attr->target_btf_path), err, out);
 	CHECK_ERR(bpf_object__load_progs(obj, attr->log_level), err, out);
 
 	return 0;
diff --git a/tools/lib/bpf/libbpf.h b/tools/lib/bpf/libbpf.h
index 8a9d462a6f6d..e8f70977d137 100644
--- a/tools/lib/bpf/libbpf.h
+++ b/tools/lib/bpf/libbpf.h
@@ -92,6 +92,7 @@ LIBBPF_API void bpf_object__close(struct bpf_object *object);
 struct bpf_object_load_attr {
 	struct bpf_object *obj;
 	int log_level;
+	const char *target_btf_path;
 };
 
 /* Load/unload object into/from kernel */
-- 
2.17.1




[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux