Re: [PATCH v2 bpf-next 02/12] libbpf: implement BPF CO-RE offset relocation algorithm

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




> On Jul 30, 2019, at 12:53 PM, Andrii Nakryiko <andriin@xxxxxx> wrote:
> 
> This patch implements the core logic for BPF CO-RE offsets relocations.
> Every instruction that needs to be relocated has corresponding
> bpf_offset_reloc as part of BTF.ext. Relocations are performed by trying
> to match recorded "local" relocation spec against potentially many
> compatible "target" types, creating corresponding spec. Details of the
> algorithm are noted in corresponding comments in the code.
> 
> Signed-off-by: Andrii Nakryiko <andriin@xxxxxx>
> ---
> tools/lib/bpf/libbpf.c | 915 ++++++++++++++++++++++++++++++++++++++++-
> tools/lib/bpf/libbpf.h |   1 +
> 2 files changed, 909 insertions(+), 7 deletions(-)
> 
> diff --git a/tools/lib/bpf/libbpf.c b/tools/lib/bpf/libbpf.c
> index ead915aec349..75da90928257 100644
> --- a/tools/lib/bpf/libbpf.c
> +++ b/tools/lib/bpf/libbpf.c
> @@ -38,6 +38,7 @@
> #include <sys/stat.h>
> #include <sys/types.h>
> #include <sys/vfs.h>
> +#include <sys/utsname.h>
> #include <tools/libc_compat.h>
> #include <libelf.h>
> #include <gelf.h>
> @@ -47,6 +48,7 @@
> #include "btf.h"
> #include "str_error.h"
> #include "libbpf_internal.h"
> +#include "hashmap.h"
> 
> #ifndef EM_BPF
> #define EM_BPF 247
> @@ -1015,17 +1017,22 @@ static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
> 	return 0;
> }
> 
> -static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf,
> -						     __u32 id)
> +static const struct btf_type *
> +skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
> {
> 	const struct btf_type *t = btf__type_by_id(btf, id);
> 
> +	if (res_id)
> +		*res_id = id;
> +
> 	while (true) {
> 		switch (BTF_INFO_KIND(t->info)) {
> 		case BTF_KIND_VOLATILE:
> 		case BTF_KIND_CONST:
> 		case BTF_KIND_RESTRICT:
> 		case BTF_KIND_TYPEDEF:
> +			if (res_id)
> +				*res_id = t->type;
> 			t = btf__type_by_id(btf, t->type);
> 			break;
> 		default:
> @@ -1044,7 +1051,7 @@ static const struct btf_type *skip_mods_and_typedefs(const struct btf *btf,
> static bool get_map_field_int(const char *map_name, const struct btf *btf,
> 			      const struct btf_type *def,
> 			      const struct btf_member *m, __u32 *res) {
> -	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type);
> +	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
> 	const char *name = btf__name_by_offset(btf, m->name_off);
> 	const struct btf_array *arr_info;
> 	const struct btf_type *arr_t;
> @@ -1110,7 +1117,7 @@ static int bpf_object__init_user_btf_map(struct bpf_object *obj,
> 		return -EOPNOTSUPP;
> 	}
> 
> -	def = skip_mods_and_typedefs(obj->btf, var->type);
> +	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
> 	if (BTF_INFO_KIND(def->info) != BTF_KIND_STRUCT) {
> 		pr_warning("map '%s': unexpected def kind %u.\n",
> 			   map_name, BTF_INFO_KIND(var->info));
> @@ -2292,6 +2299,893 @@ bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj,
> 	return 0;
> }
> 
> +#define BPF_CORE_SPEC_MAX_LEN 64
> +
> +/* represents BPF CO-RE field or array element accessor */
> +struct bpf_core_accessor {
> +	__u32 type_id;		/* struct/union type or array element type */
> +	__u32 idx;		/* field index or array index */
> +	const char *name;	/* field name or NULL for array accessor */
> +};
> +
> +struct bpf_core_spec {
> +	const struct btf *btf;
> +	/* high-level spec: named fields and array indices only */
> +	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
> +	/* high-level spec length */
> +	int len;
> +	/* raw, low-level spec: 1-to-1 with accessor spec string */
> +	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
> +	/* raw spec length */
> +	int raw_len;
> +	/* field byte offset represented by spec */
> +	__u32 offset;
> +};
> +
> +static bool str_is_empty(const char *s)
> +{
> +	return !s || !s[0];
> +}
> +
> +static int btf_kind(const struct btf_type *t)
> +{
> +	return BTF_INFO_KIND(t->info);
> +}
> +
> +static bool btf_is_composite(const struct btf_type *t)
> +{
> +	int kind = btf_kind(t);
> +
> +	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
> +}
> +
> +static bool btf_is_array(const struct btf_type *t)
> +{
> +	return btf_kind(t) == BTF_KIND_ARRAY;
> +}
> +
> +/* 
> + * Turn bpf_offset_reloc into a low- and high-level spec representation,
> + * validating correctness along the way, as well as calculating resulting
> + * field offset (in bytes), specified by accessor string. Low-level spec
> + * captures every single level of nestedness, including traversing anonymous
> + * struct/union members. High-level one only captures semantically meaningful
> + * "turning points": named fields and array indicies.
> + * E.g., for this case:
> + *
> + *   struct sample {
> + *       int __unimportant;
> + *       struct {
> + *           int __1;
> + *           int __2;
> + *           int a[7];
> + *       };
> + *   };
> + *
> + *   struct sample *s = ...;
> + *
> + *   int x = &s->a[3]; // access string = '0:1:2:3'
> + *
> + * Low-level spec has 1:1 mapping with each element of access string (it's
> + * just a parsed access string representation): [0, 1, 2, 3].
> + *
> + * High-level spec will capture only 3 points:
> + *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
> + *   - field 'a' access (corresponds to '2' in low-level spec);
> + *   - array element #3 access (corresponds to '3' in low-level spec).
> + *
> + */
> +static int bpf_core_spec_parse(const struct btf *btf,
> +			       __u32 type_id,
> +			       const char *spec_str,
> +			       struct bpf_core_spec *spec)
> +{
> +	int access_idx, parsed_len, i;
> +	const struct btf_type *t;
> +	const char *name;
> +	__u32 id;
> +	__s64 sz;
> +
> +	if (str_is_empty(spec_str) || *spec_str == ':')
> +		return -EINVAL;
> +
> +	memset(spec, 0, sizeof(*spec));
> +	spec->btf = btf;
> +
> +	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
> +	while (*spec_str) {
> +		if (*spec_str == ':')
> +			++spec_str;
> +		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
> +			return -EINVAL;
> +		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
> +			return -E2BIG;
> +		spec_str += parsed_len;
> +		spec->raw_spec[spec->raw_len++] = access_idx;
> +	}
> +
> +	if (spec->raw_len == 0)
> +		return -EINVAL;
> +
> +	/* first spec value is always reloc type array index */
> +	t = skip_mods_and_typedefs(btf, type_id, &id);
> +	if (!t)
> +		return -EINVAL;
> +
> +	access_idx = spec->raw_spec[0];
> +	spec->spec[0].type_id = id;
> +	spec->spec[0].idx = access_idx;
> +	spec->len++;
> +
> +	sz = btf__resolve_size(btf, id);
> +	if (sz < 0)
> +		return sz;
> +	spec->offset = access_idx * sz;
> +
> +	for (i = 1; i < spec->raw_len; i++) {
> +		t = skip_mods_and_typedefs(btf, id, &id);
> +		if (!t)
> +			return -EINVAL;
> +
> +		access_idx = spec->raw_spec[i];
> +
> +		if (btf_is_composite(t)) {
> +			const struct btf_member *m = (void *)(t + 1);

Why (void *) instead of (const struct btf_member *)? There are a few more
in the rest of the patch. 

> +			__u32 offset;
> +
> +			if (access_idx >= BTF_INFO_VLEN(t->info))
> +				return -EINVAL;
> +
> +			m = &m[access_idx];
> +
> +			if (BTF_INFO_KFLAG(t->info)) {
> +				if (BTF_MEMBER_BITFIELD_SIZE(m->offset))
> +					return -EINVAL;
> +				offset = BTF_MEMBER_BIT_OFFSET(m->offset);
> +			} else {
> +				offset = m->offset;
> +			}
> +			if (m->offset % 8)
> +				return -EINVAL;
> +			spec->offset += offset / 8;
> +
> +			if (m->name_off) {
> +				name = btf__name_by_offset(btf, m->name_off);
> +				if (str_is_empty(name))
> +					return -EINVAL;
> +
> +				spec->spec[spec->len].type_id = id;
> +				spec->spec[spec->len].idx = access_idx;
> +				spec->spec[spec->len].name = name;
> +				spec->len++;
> +			}
> +
> +			id = m->type;
> +		} else if (btf_is_array(t)) {
> +			const struct btf_array *a = (void *)(t + 1);
> +
> +			t = skip_mods_and_typedefs(btf, a->type, &id);
> +			if (!t || access_idx >= a->nelems)
> +				return -EINVAL;
> +
> +			spec->spec[spec->len].type_id = id;
> +			spec->spec[spec->len].idx = access_idx;
> +			spec->len++;
> +
> +			sz = btf__resolve_size(btf, id);
> +			if (sz < 0)
> +				return sz;
> +			spec->offset += access_idx * sz;
> +		} else {
> +			pr_warning("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n",
> +				   type_id, spec_str, i, id, btf_kind(t));
> +			return -EINVAL;
> +		}
> +	}
> +
> +	return 0;
> +}
> +
> +/* Given 'some_struct_name___with_flavor' return the length of a name prefix
> + * before last triple underscore. Struct name part after last triple
> + * underscore is ignored by BPF CO-RE relocation during relocation matching.
> + */
> +static size_t bpf_core_essential_name_len(const char *name)
> +{
> +	size_t n = strlen(name);
> +	int i = n - 3;
> +
> +	while (i > 0) {
> +		if (name[i] == '_' && name[i + 1] == '_' && name[i + 2] == '_')
> +			return i;
> +		i--;
> +	}
> +	return n;
> +}
> +
> +/* dynamically sized list of type IDs */
> +struct ids_vec {
> +	__u32 *data;
> +	int len;
> +};
> +
> +static void bpf_core_free_cands(struct ids_vec *cand_ids)
> +{
> +	free(cand_ids->data);
> +	free(cand_ids);
> +}
> +
> +static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
> +					   __u32 local_type_id,
> +					   const struct btf *targ_btf)
> +{
> +	size_t local_essent_len, targ_essent_len;
> +	const char *local_name, *targ_name;
> +	const struct btf_type *t;
> +	struct ids_vec *cand_ids;
> +	__u32 *new_ids;
> +	int i, err, n;
> +
> +	t = btf__type_by_id(local_btf, local_type_id);
> +	if (!t)
> +		return ERR_PTR(-EINVAL);
> +
> +	local_name = btf__name_by_offset(local_btf, t->name_off);
> +	if (str_is_empty(local_name))
> +		return ERR_PTR(-EINVAL);
> +	local_essent_len = bpf_core_essential_name_len(local_name);
> +
> +	cand_ids = calloc(1, sizeof(*cand_ids));
> +	if (!cand_ids)
> +		return ERR_PTR(-ENOMEM);
> +
> +	n = btf__get_nr_types(targ_btf);
> +	for (i = 1; i <= n; i++) {
> +		t = btf__type_by_id(targ_btf, i);
> +		targ_name = btf__name_by_offset(targ_btf, t->name_off);
> +		if (str_is_empty(targ_name))
> +			continue;
> +
> +		targ_essent_len = bpf_core_essential_name_len(targ_name);
> +		if (targ_essent_len != local_essent_len)
> +			continue;
> +
> +		if (strncmp(local_name, targ_name, local_essent_len) == 0) {
> +			pr_debug("[%d] (%s): found candidate [%d] (%s)\n",
> +				 local_type_id, local_name, i, targ_name);
> +			new_ids = realloc(cand_ids->data, cand_ids->len + 1);
> +			if (!new_ids) {
> +				err = -ENOMEM;
> +				goto err_out;
> +			}
> +			cand_ids->data = new_ids;
> +			cand_ids->data[cand_ids->len++] = i;
> +		}
> +	}
> +	return cand_ids;
> +err_out:
> +	bpf_core_free_cands(cand_ids);
> +	return ERR_PTR(err);
> +}
> +
> +/* Check two types for compatibility, skipping const/volatile/restrict and
> + * typedefs, to ensure we are relocating offset to the compatible entities:
> + *   - any two STRUCTs/UNIONs are compatible and can be mixed;
> + *   - any two FWDs are compatible;
> + *   - any two PTRs are always compatible;
> + *   - for ENUMs, check sizes, names are ignored;
> + *   - for INT, size and bitness should match, signedness is ignored;
> + *   - for ARRAY, dimensionality is ignored, element types are checked for
> + *     compatibility recursively;
> + *   - everything else shouldn't be ever a target of relocation.
> + * These rules are not set in stone and probably will be adjusted as we get
> + * more experience with using BPF CO-RE relocations.
> + */
> +static int bpf_core_fields_are_compat(const struct btf *local_btf,
> +				      __u32 local_id,
> +				      const struct btf *targ_btf,
> +				      __u32 targ_id)
> +{
> +	const struct btf_type *local_type, *targ_type;
> +	__u16 kind;
> +
> +recur:
> +	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
> +	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
> +	if (!local_type || !targ_type)
> +		return -EINVAL;
> +
> +	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
> +		return 1;
> +	if (BTF_INFO_KIND(local_type->info) != BTF_INFO_KIND(targ_type->info))
> +		return 0;
> +
> +	kind = BTF_INFO_KIND(local_type->info);
> +	switch (kind) {
> +	case BTF_KIND_FWD:
> +	case BTF_KIND_PTR:
> +		return 1;
> +	case BTF_KIND_ENUM:
> +		return local_type->size == targ_type->size;
> +	case BTF_KIND_INT: {
> +		__u32 loc_int = *(__u32 *)(local_type + 1);
> +		__u32 targ_int = *(__u32 *)(targ_type + 1);
> +
> +		return BTF_INT_OFFSET(loc_int) == 0 &&
> +		       BTF_INT_OFFSET(targ_int) == 0 &&
> +		       local_type->size == targ_type->size &&
> +		       BTF_INT_BITS(loc_int) == BTF_INT_BITS(targ_int);
> +	}
> +	case BTF_KIND_ARRAY: {
> +		const struct btf_array *loc_a, *targ_a;
> +
> +		loc_a = (void *)(local_type + 1);
> +		targ_a = (void *)(targ_type + 1);
> +		local_id = loc_a->type;
> +		targ_id = targ_a->type;
> +		goto recur;
> +	}
> +	default:
> +		pr_warning("unexpected kind %d relocated, local [%d], target [%d]\n",
> +			   kind, local_id, targ_id);
> +		return 0;
> +	}
> +}
> +
> +/* 
> + * Given single high-level named field accessor in local type, find
> + * corresponding high-level accessor for a target type. Along the way,
> + * maintain low-level spec for target as well. Also keep updating target
> + * offset.
> + *
> + * Searching is performed through recursive exhaustive enumeration of all
> + * fields of a struct/union. If there are any anonymous (embedded)
> + * structs/unions, they are recursively searched as well. If field with
> + * desired name is found, check compatibility between local and target types,
> + * before returning result.
> + *
> + * 1 is returned, if field is found.
> + * 0 is returned if no compatible field is found.
> + * <0 is returned on error.
> + */
> +static int bpf_core_match_member(const struct btf *local_btf,
> +				 const struct bpf_core_accessor *local_acc,
> +				 const struct btf *targ_btf,
> +				 __u32 targ_id,
> +				 struct bpf_core_spec *spec,
> +				 __u32 *next_targ_id)
> +{
> +	const struct btf_type *local_type, *targ_type;
> +	const struct btf_member *local_member, *m;
> +	const char *local_name, *targ_name;
> +	__u32 local_id;
> +	int i, n, found;
> +
> +	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
> +	if (!targ_type)
> +		return -EINVAL;
> +	if (!btf_is_composite(targ_type))
> +		return 0;
> +
> +	local_id = local_acc->type_id;
> +	local_type = btf__type_by_id(local_btf, local_id);
> +	local_member = (void *)(local_type + 1);
> +	local_member += local_acc->idx;
> +	local_name = btf__name_by_offset(local_btf, local_member->name_off);
> +
> +	n = BTF_INFO_VLEN(targ_type->info);
> +	m = (void *)(targ_type + 1);
> +	for (i = 0; i < n; i++, m++) {
> +		__u32 offset;
> +
> +		/* bitfield relocations not supported */
> +		if (BTF_INFO_KFLAG(targ_type->info)) {
> +			if (BTF_MEMBER_BITFIELD_SIZE(m->offset))
> +				continue;
> +			offset = BTF_MEMBER_BIT_OFFSET(m->offset);
> +		} else {
> +			offset = m->offset;
> +		}
> +		if (offset % 8)
> +			continue;
> +
> +		/* too deep struct/union/array nesting */
> +		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
> +			return -E2BIG;
> +
> +		/* speculate this member will be the good one */
> +		spec->offset += offset / 8;
> +		spec->raw_spec[spec->raw_len++] = i;
> +
> +		targ_name = btf__name_by_offset(targ_btf, m->name_off);
> +		if (str_is_empty(targ_name)) {
> +			/* embedded struct/union, we need to go deeper */
> +			found = bpf_core_match_member(local_btf, local_acc,
> +						      targ_btf, m->type,
> +						      spec, next_targ_id);
> +			if (found) /* either found or error */
> +				return found;
> +		} else if (strcmp(local_name, targ_name) == 0) {
> +			/* matching named field */
> +			struct bpf_core_accessor *targ_acc;
> +
> +			targ_acc = &spec->spec[spec->len++];
> +			targ_acc->type_id = targ_id;
> +			targ_acc->idx = i;
> +			targ_acc->name = targ_name;
> +
> +			*next_targ_id = m->type;
> +			found = bpf_core_fields_are_compat(local_btf,
> +							   local_member->type,
> +							   targ_btf, m->type);
> +			if (!found)
> +				spec->len--; /* pop accessor */
> +			return found;
> +		}
> +		/* member turned out not to be what we looked for */
> +		spec->offset -= offset / 8;
> +		spec->raw_len--;
> +	}
> +
> +	return 0;
> +}
> +
> +/*
> + * Try to match local spec to a target type and, if successful, produce full
> + * target spec (high-level, low-level + offset).
> + */
> +static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
> +			       const struct btf *targ_btf, __u32 targ_id,
> +			       struct bpf_core_spec *targ_spec)
> +{
> +	const struct btf_type *targ_type;
> +	const struct bpf_core_accessor *local_acc;
> +	struct bpf_core_accessor *targ_acc;
> +	int i, sz, matched;
> +
> +	memset(targ_spec, 0, sizeof(*targ_spec));
> +	targ_spec->btf = targ_btf;
> +
> +	local_acc = &local_spec->spec[0];
> +	targ_acc = &targ_spec->spec[0];
> +
> +	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
> +		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
> +						   &targ_id);
> +		if (!targ_type)
> +			return -EINVAL;
> +
> +		if (local_acc->name) {
> +			matched = bpf_core_match_member(local_spec->btf,
> +							local_acc,
> +							targ_btf, targ_id,
> +							targ_spec, &targ_id);
> +			if (matched <= 0)
> +				return matched;
> +		} else {
> +			/* for i=0, targ_id is already treated as array element
> +			 * type (because it's the original struct), for others
> +			 * we should find array element type first
> +			 */
> +			if (i > 0) {
> +				const struct btf_array *a;
> +
> +				if (!btf_is_array(targ_type))
> +					return 0;
> +
> +				a = (void *)(targ_type + 1);
> +				if (local_acc->idx >= a->nelems)
> +					return 0;
> +				if (!skip_mods_and_typedefs(targ_btf, a->type,
> +							    &targ_id))
> +					return -EINVAL;
> +			}
> +
> +			/* too deep struct/union/array nesting */
> +			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
> +				return -E2BIG;
> +
> +			targ_acc->type_id = targ_id;
> +			targ_acc->idx = local_acc->idx;
> +			targ_acc->name = NULL;
> +			targ_spec->len++;
> +			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
> +			targ_spec->raw_len++;
> +
> +			sz = btf__resolve_size(targ_btf, targ_id);
> +			if (sz < 0)
> +				return sz;
> +			targ_spec->offset += local_acc->idx * sz;
> +		}
> +	}
> +
> +	return 1;
> +}
> +
> +/*
> + * Patch relocatable BPF instruction.
> + * Expected insn->imm value is provided for validation, as well as the new
> + * relocated value.
> + *
> + * Currently three kinds of BPF instructions are supported:
> + * 1. rX = <imm> (assignment with immediate operand);
> + * 2. rX += <imm> (arithmetic operations with immediate operand);
> + * 3. *(rX) = <imm> (indirect memory assignment with immediate operand).
> + *
> + * If actual insn->imm value is wrong, bail out.
> + */
> +static int bpf_core_reloc_insn(struct bpf_program *prog, int insn_off,
> +			       __u32 orig_off, __u32 new_off)
> +{
> +	struct bpf_insn *insn;
> +	int insn_idx;
> +	__u8 class;
> +
> +	if (insn_off % sizeof(struct bpf_insn))
> +		return -EINVAL;
> +	insn_idx = insn_off / sizeof(struct bpf_insn);
> +
> +	insn = &prog->insns[insn_idx];
> +	class = BPF_CLASS(insn->code);
> +
> +	if (class == BPF_ALU || class == BPF_ALU64) {
> +		if (BPF_SRC(insn->code) != BPF_K)
> +			return -EINVAL;
> +		if (insn->imm != orig_off)
> +			return -EINVAL;
> +		insn->imm = new_off;
> +		pr_debug("prog '%s': patched insn #%d (ALU/ALU64) imm %d -> %d\n",
> +			 bpf_program__title(prog, false),
> +			 insn_idx, orig_off, new_off);
> +	} else {
> +		pr_warning("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n",
> +			   bpf_program__title(prog, false),
> +			   insn_idx, insn->code, insn->src_reg, insn->dst_reg,
> +			   insn->off, insn->imm);
> +		return -EINVAL;
> +	}
> +	return 0;
> +}
> +
> +/*
> + * Probe few well-known locations for vmlinux kernel image and try to load BTF
> + * data out of it to use for target BTF.
> + */
> +static struct btf *bpf_core_find_kernel_btf(void)
> +{
> +	const char *locations[] = {
> +		"/lib/modules/%1$s/vmlinux-%1$s",
> +		"/usr/lib/modules/%1$s/kernel/vmlinux",
> +	};
> +	char path[PATH_MAX + 1];
> +	struct utsname buf;
> +	struct btf *btf;
> +	int i, err;
> +
> +	err = uname(&buf);
> +	if (err) {
> +		pr_warning("failed to uname(): %d\n", err);
> +		return ERR_PTR(err);
> +	}
> +
> +	for (i = 0; i < ARRAY_SIZE(locations); i++) {
> +		snprintf(path, PATH_MAX, locations[i], buf.release);
> +		pr_debug("attempting to load kernel BTF from '%s'\n", path);
> +
> +		if (access(path, R_OK))
> +			continue;
> +
> +		btf = btf__parse_elf(path, NULL);
> +		if (IS_ERR(btf))
> +			continue;
> +
> +		pr_debug("successfully loaded kernel BTF from '%s'\n", path);
> +		return btf;
> +	}
> +
> +	pr_warning("failed to find valid kernel BTF\n");
> +	return ERR_PTR(-ESRCH);
> +}
> +
> +/* Output spec definition in the format:
> + * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
> + * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
> + */
> +static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
> +{
> +	const struct btf_type *t;
> +	const char *s;
> +	__u32 type_id;
> +	int i;
> +
> +	type_id = spec->spec[0].type_id;
> +	t = btf__type_by_id(spec->btf, type_id);
> +	s = btf__name_by_offset(spec->btf, t->name_off);
> +	libbpf_print(level, "[%u] (%s) + ", type_id, s);
> +
> +	for (i = 0; i < spec->raw_len; i++)
> +		libbpf_print(level, "%d%s", spec->raw_spec[i],
> +			     i == spec->raw_len - 1 ? " => " : ":");
> +
> +	libbpf_print(level, "%u @ &x", spec->offset);
> +
> +	for (i = 0; i < spec->len; i++) {
> +		if (spec->spec[i].name)
> +			libbpf_print(level, ".%s", spec->spec[i].name);
> +		else
> +			libbpf_print(level, "[%u]", spec->spec[i].idx);
> +	}
> +
> +}
> +
> +static size_t bpf_core_hash_fn(const void *key, void *ctx)
> +{
> +	return (size_t)key;
> +}
> +
> +static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
> +{
> +	return k1 == k2;
> +}
> +
> +static void *u32_to_ptr(__u32 x)
> +{
> +	return (void *)(uintptr_t)x;
> +}
> +
> +/* 
> + * CO-RE relocate single instruction.
> + *
> + * The outline and important points of the algorithm:
> + * 1. For given local type, find corresponding candidate target types.
> + *    Candidate type is a type with the same "essential" name, ignoring
> + *    everything after last triple underscore (___). E.g., `sample`,
> + *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
> + *    for each other. Names with triple underscore are referred to as
> + *    "flavors" and are useful, among other things, to allow to
> + *    specify/support incompatible variations of the same kernel struct, which
> + *    might differ between different kernel versions and/or build
> + *    configurations.
> + *
> + *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
> + *    converter, when deduplicated BTF of a kernel still contains more than
> + *    one different types with the same name. In that case, ___2, ___3, etc
> + *    are appended starting from second name conflict. But start flavors are
> + *    also useful to be defined "locally", in BPF program, to extract same
> + *    data from incompatible changes between different kernel
> + *    versions/configurations. For instance, to handle field renames between
> + *    kernel versions, one can use two flavors of the struct name with the
> + *    same common name and use conditional relocations to extract that field,
> + *    depending on target kernel version.
> + * 2. For each candidate type, try to match local specification to this
> + *    candidate target type. Matching involves finding corresponding
> + *    high-level spec accessors, meaning that all named fields should match,
> + *    as well as all array accesses should be within the actual bounds. Also,
> + *    types should be compatible (see bpf_core_fields_are_compat for details).
> + * 3. It is supported and expected that there might be multiple flavors
> + *    matching the spec. As long as all the specs resolve to the same set of
> + *    offsets across all candidates, there is not error. If there is any
> + *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
> + *    imprefection of BTF deduplication, which can cause slight duplication of
> + *    the same BTF type, if some directly or indirectly referenced (by
> + *    pointer) type gets resolved to different actual types in different
> + *    object files. If such situation occurs, deduplicated BTF will end up
> + *    with two (or more) structurally identical types, which differ only in
> + *    types they refer to through pointer. This should be OK in most cases and
> + *    is not an error.
> + * 4. Candidate types search is performed by linearly scanning through all
> + *    types in target BTF. It is anticipated that this is overall more
> + *    efficient memory-wise and not significantly worse (if not better)
> + *    CPU-wise compared to prebuilding a map from all local type names to
> + *    a list of candidate type names. It's also sped up by caching resolved
> + *    list of matching candidates per each local "root" type ID, that has at
> + *    least one bpf_offset_reloc associated with it. This list is shared
> + *    between multiple relocations for the same type ID and is updated as some
> + *    of the candidates are pruned due to structural incompatibility.
> + */
> +static int bpf_core_reloc_offset(struct bpf_program *prog,
> +				 const struct bpf_offset_reloc *relo,
> +				 int relo_idx,
> +				 const struct btf *local_btf,
> +				 const struct btf *targ_btf,
> +				 struct hashmap *cand_cache)
> +{
> +	const char *prog_name = bpf_program__title(prog, false);
> +	struct bpf_core_spec local_spec, cand_spec, targ_spec;
> +	const void *type_key = u32_to_ptr(relo->type_id);
> +	const struct btf_type *local_type, *cand_type;
> +	const char *local_name, *cand_name;
> +	struct ids_vec *cand_ids;
> +	__u32 local_id, cand_id;
> +	const char *spec_str;
> +	int i, j, err;
> +
> +	local_id = relo->type_id;
> +	local_type = btf__type_by_id(local_btf, local_id);
> +	if (!local_type)
> +		return -EINVAL;
> +
> +	local_name = btf__name_by_offset(local_btf, local_type->name_off);
> +	if (str_is_empty(local_name))
> +		return -EINVAL;
> +
> +	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
> +	if (str_is_empty(spec_str))
> +		return -EINVAL;
> +
> +	err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec);
> +	if (err) {
> +		pr_warning("prog '%s': relo #%d: parsing [%d] (%s) + %s failed: %d\n",
> +			   prog_name, relo_idx, local_id, local_name, spec_str,
> +			   err);
> +		return -EINVAL;
> +	}
> +
> +	pr_debug("prog '%s': relo #%d: spec is ", prog_name, relo_idx);
> +	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
> +	libbpf_print(LIBBPF_DEBUG, "\n");
> +
> +	if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
> +		cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
> +		if (IS_ERR(cand_ids)) {
> +			pr_warning("prog '%s': relo #%d: target candidate search failed for [%d] (%s): %ld",
> +				   prog_name, relo_idx, local_id, local_name,
> +				   PTR_ERR(cand_ids));
> +			return PTR_ERR(cand_ids);
> +		}
> +		err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
> +		if (err) {
> +			bpf_core_free_cands(cand_ids);
> +			return err;
> +		}
> +	}
> +
> +	for (i = 0, j = 0; i < cand_ids->len; i++) {
> +		cand_id = cand_ids->data[i];
> +		cand_type = btf__type_by_id(targ_btf, cand_id);
> +		cand_name = btf__name_by_offset(targ_btf, cand_type->name_off);
> +
> +		err = bpf_core_spec_match(&local_spec, targ_btf,
> +					  cand_id, &cand_spec);
> +		if (err < 0) {
> +			pr_warning("prog '%s': relo #%d: failed to match spec ",
> +				   prog_name, relo_idx);
> +			bpf_core_dump_spec(LIBBPF_WARN, &local_spec);
> +			libbpf_print(LIBBPF_WARN,
> +				     " to candidate #%d [%d] (%s): %d\n",
> +				     i, cand_id, cand_name, err);
> +			return err;
> +		}
> +		if (err == 0) {
> +			pr_debug("prog '%s': relo #%d: candidate #%d [%d] (%s) doesn't match spec ",
> +				 prog_name, relo_idx, i, cand_id, cand_name);
> +			bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
> +			libbpf_print(LIBBPF_DEBUG, "\n");
> +			continue;
> +		}
> +
> +		pr_debug("prog '%s': relo #%d: candidate #%d matched as spec ",
> +			 prog_name, relo_idx, i);
> +		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
> +		libbpf_print(LIBBPF_DEBUG, "\n");
> +
> +		if (j == 0) {
> +			targ_spec = cand_spec;
> +		} else if (cand_spec.offset != targ_spec.offset) {
> +			/* if there are many candidates, they should all
> +			 * resolve to the same offset
> +			 */
> +			pr_warning("prog '%s': relo #%d: candidate #%d spec ",
> +				   prog_name, relo_idx, i);
> +			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
> +			libbpf_print(LIBBPF_WARN,
> +				     " conflicts with target spec ");
> +			bpf_core_dump_spec(LIBBPF_WARN, &targ_spec);
> +			libbpf_print(LIBBPF_WARN, "\n");
> +			return -EINVAL;
> +		}
> +
> +		cand_ids->data[j++] = cand_spec.spec[0].type_id;
> +	}
> +
> +	cand_ids->len = j;
> +	if (cand_ids->len == 0) {
> +		pr_warning("prog '%s': relo #%d: no matching targets found for [%d] (%s) + %s\n",
> +			   prog_name, relo_idx, local_id, local_name, spec_str);
> +		return -ESRCH;
> +	}
> +
> +	err = bpf_core_reloc_insn(prog, relo->insn_off,
> +				  local_spec.offset, targ_spec.offset);
> +	if (err) {
> +		pr_warning("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
> +			   prog_name, relo_idx, relo->insn_off, err);
> +		return -EINVAL;
> +	}
> +
> +	return 0;
> +}
> +
> +static int
> +bpf_core_reloc_offsets(struct bpf_object *obj, const char *targ_btf_path)
> +{
> +	const struct btf_ext_info_sec *sec;
> +	const struct bpf_offset_reloc *rec;
> +	const struct btf_ext_info *seg;
> +	struct hashmap_entry *entry;
> +	struct hashmap *cand_cache = NULL;
> +	struct bpf_program *prog;
> +	struct btf *targ_btf;
> +	const char *sec_name;
> +	int i, err = 0;
> +
> +	if (targ_btf_path)
> +		targ_btf = btf__parse_elf(targ_btf_path, NULL);
> +	else
> +		targ_btf = bpf_core_find_kernel_btf();
> +	if (IS_ERR(targ_btf)) {
> +		pr_warning("failed to get target BTF: %ld\n",
> +			   PTR_ERR(targ_btf));
> +		return PTR_ERR(targ_btf);
> +	}
> +
> +	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
> +	if (IS_ERR(cand_cache)) {
> +		err = PTR_ERR(cand_cache);
> +		goto out;
> +	}
> +
> +	seg = &obj->btf_ext->offset_reloc_info;
> +	for_each_btf_ext_sec(seg, sec) {
> +		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
> +		if (str_is_empty(sec_name)) {
> +			err = -EINVAL;
> +			goto out;
> +		}
> +		prog = bpf_object__find_program_by_title(obj, sec_name);
> +		if (!prog) {
> +			pr_warning("failed to find program '%s' for CO-RE offset relocation\n",
> +				   sec_name);
> +			err = -EINVAL;
> +			goto out;
> +		}
> +
> +		pr_debug("prog '%s': performing %d CO-RE offset relocs\n",
> +			 sec_name, sec->num_info);
> +
> +		for_each_btf_ext_rec(seg, sec, i, rec) {
> +			err = bpf_core_reloc_offset(prog, rec, i, obj->btf,
> +						    targ_btf, cand_cache);
> +			if (err) {
> +				pr_warning("prog '%s': relo #%d: failed to relocate: %d\n",
> +					   sec_name, i, err);
> +				goto out;
> +			}
> +		}
> +	}
> +
> +out:
> +	btf__free(targ_btf);
> +	if (!IS_ERR_OR_NULL(cand_cache)) {
> +		hashmap__for_each_entry(cand_cache, entry, i) {
> +			bpf_core_free_cands(entry->value);
> +		}
> +		hashmap__free(cand_cache);
> +	}
> +	return err;
> +}
> +
> +static int
> +bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
> +{
> +	int err = 0;
> +
> +	if (obj->btf_ext->offset_reloc_info.len)
> +		err = bpf_core_reloc_offsets(obj, targ_btf_path);
> +
> +	return err;
> +}
> +
> static int
> bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj,
> 			struct reloc_desc *relo)
> @@ -2399,14 +3293,21 @@ bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj)
> 	return 0;
> }
> 
> -
> static int
> -bpf_object__relocate(struct bpf_object *obj)
> +bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
> {
> 	struct bpf_program *prog;
> 	size_t i;
> 	int err;
> 
> +	if (obj->btf_ext) {
> +		err = bpf_object__relocate_core(obj, targ_btf_path);
> +		if (err) {
> +			pr_warning("failed to perform CO-RE relocations: %d\n",
> +				   err);
> +			return err;
> +		}
> +	}
> 	for (i = 0; i < obj->nr_programs; i++) {
> 		prog = &obj->programs[i];
> 
> @@ -2807,7 +3708,7 @@ int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
> 	obj->loaded = true;
> 
> 	CHECK_ERR(bpf_object__create_maps(obj), err, out);
> -	CHECK_ERR(bpf_object__relocate(obj), err, out);
> +	CHECK_ERR(bpf_object__relocate(obj, attr->target_btf_path), err, out);
> 	CHECK_ERR(bpf_object__load_progs(obj, attr->log_level), err, out);
> 
> 	return 0;
> diff --git a/tools/lib/bpf/libbpf.h b/tools/lib/bpf/libbpf.h
> index 8a9d462a6f6d..e8f70977d137 100644
> --- a/tools/lib/bpf/libbpf.h
> +++ b/tools/lib/bpf/libbpf.h
> @@ -92,6 +92,7 @@ LIBBPF_API void bpf_object__close(struct bpf_object *object);
> struct bpf_object_load_attr {
> 	struct bpf_object *obj;
> 	int log_level;
> +	const char *target_btf_path;
> };
> 
> /* Load/unload object into/from kernel */
> -- 
> 2.17.1
> 





[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux