Re: [PATCH v6 bpf-next 02/17] bpf: verifier: mark verified-insn with sub-register zext flag

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 05/06/2019 03:49 PM, Daniel Borkmann wrote:
> On 05/03/2019 12:42 PM, Jiong Wang wrote:
>> eBPF ISA specification requires high 32-bit cleared when low 32-bit
>> sub-register is written. This applies to destination register of ALU32 etc.
>> JIT back-ends must guarantee this semantic when doing code-gen.
>>
>> x86-64 and arm64 ISA has the same semantic, so the corresponding JIT
>> back-end doesn't need to do extra work. However, 32-bit arches (arm, nfp
>> etc.) and some other 64-bit arches (powerpc, sparc etc), need explicit zero
>> extension sequence to meet such semantic.
>>
>> This is important, because for code the following:
>>
>>   u64_value = (u64) u32_value
>>   ... other uses of u64_value
>>
>> compiler could exploit the semantic described above and save those zero
>> extensions for extending u32_value to u64_value. Hardware, runtime, or BPF
>> JIT back-ends, are responsible for guaranteeing this. Some benchmarks show
>> ~40% sub-register writes out of total insns, meaning ~40% extra code-gen (
>> could go up to more for some arches which requires two shifts for zero
>> extension) because JIT back-end needs to do extra code-gen for all such
>> instructions.
>>
>> However this is not always necessary in case u32_value is never cast into
>> a u64, which is quite normal in real life program. So, it would be really
>> good if we could identify those places where such type cast happened, and
>> only do zero extensions for them, not for the others. This could save a lot
>> of BPF code-gen.
>>
>> Algo:
>>  - Split read flags into READ32 and READ64.
>>
>>  - Record indices of instructions that do sub-register def (write). And
>>    these indices need to stay with reg state so path pruning and bpf
>>    to bpf function call could be handled properly.
>>
>>    These indices are kept up to date while doing insn walk.
>>
>>  - A full register read on an active sub-register def marks the def insn as
>>    needing zero extension on dst register.
>>
>>  - A new sub-register write overrides the old one.
>>
>>    A new full register write makes the register free of zero extension on
>>    dst register.
>>
>>  - When propagating read64 during path pruning, also marks def insns whose
>>    defs are hanging active sub-register.
>>
>> Reviewed-by: Jakub Kicinski <jakub.kicinski@xxxxxxxxxxxxx>
>> Signed-off-by: Jiong Wang <jiong.wang@xxxxxxxxxxxxx>
> 
> [...]
>> +/* This function is supposed to be used by the following 32-bit optimization
>> + * code only. It returns TRUE if the source or destination register operates
>> + * on 64-bit, otherwise return FALSE.
>> + */
>> +static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
>> +		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
>> +{
>> +	u8 code, class, op;
>> +
>> +	code = insn->code;
>> +	class = BPF_CLASS(code);
>> +	op = BPF_OP(code);
>> +	if (class == BPF_JMP) {
>> +		/* BPF_EXIT for "main" will reach here. Return TRUE
>> +		 * conservatively.
>> +		 */
>> +		if (op == BPF_EXIT)
>> +			return true;
>> +		if (op == BPF_CALL) {
>> +			/* BPF to BPF call will reach here because of marking
>> +			 * caller saved clobber with DST_OP_NO_MARK for which we
>> +			 * don't care the register def because they are anyway
>> +			 * marked as NOT_INIT already.
>> +			 */
>> +			if (insn->src_reg == BPF_PSEUDO_CALL)
>> +				return false;
>> +			/* Helper call will reach here because of arg type
>> +			 * check.
>> +			 */
>> +			if (t == SRC_OP)
>> +				return helper_call_arg64(env, insn->imm, regno);
>> +
>> +			return false;
>> +		}
>> +	}
>> +
>> +	if (class == BPF_ALU64 || class == BPF_JMP ||
>> +	    /* BPF_END always use BPF_ALU class. */
>> +	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
>> +		return true;
> 
> For the BPF_JMP + JA case we don't look at registers, but I presume here
> we 'pretend' to use 64 bit regs to be more conservative as verifier would
> otherwise need to do more complex analysis at the jump target wrt zero
> extension, correct?

Hmm, scratch that last thought. Shouldn't it behave the same as with the
below class == BPF_JMP32 case?

>> +	if (class == BPF_ALU || class == BPF_JMP32)
>> +		return false;
>> +
>> +	if (class == BPF_LDX) {
>> +		if (t != SRC_OP)
>> +			return BPF_SIZE(code) == BPF_DW;
>> +		/* LDX source must be ptr. */
>> +		return true;
>> +	}
>> +
>> +	if (class == BPF_STX) {
>> +		if (reg->type != SCALAR_VALUE)
>> +			return true;
>> +		return BPF_SIZE(code) == BPF_DW;
>> +	}
>> +
>> +	if (class == BPF_LD) {
>> +		u8 mode = BPF_MODE(code);
>> +
>> +		/* LD_IMM64 */
>> +		if (mode == BPF_IMM)
>> +			return true;
>> +
>> +		/* Both LD_IND and LD_ABS return 32-bit data. */
>> +		if (t != SRC_OP)
>> +			return  false;
>> +
>> +		/* Implicit ctx ptr. */
>> +		if (regno == BPF_REG_6)
>> +			return true;
>> +
>> +		/* Explicit source could be any width. */
>> +		return true;
>> +	}
>> +
>> +	if (class == BPF_ST)
>> +		/* The only source register for BPF_ST is a ptr. */
>> +		return true;
>> +
>> +	/* Conservatively return true at default. */
>> +	return true;
>> +}




[Index of Archives]     [Linux Samsung SoC]     [Linux Rockchip SoC]     [Linux Actions SoC]     [Linux for Synopsys ARC Processors]     [Linux NFS]     [Linux NILFS]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]


  Powered by Linux