On Fri, Mar 1, 2019 at 10:58 AM Yonghong Song <yhs@xxxxxx> wrote: > > > > On 3/1/19 10:48 AM, Andrii Nakryiko wrote: > > On Fri, Mar 1, 2019 at 10:31 AM Yonghong Song <yhs@xxxxxx> wrote: > >> > >> > >> > >> On 2/28/19 3:18 PM, Daniel Borkmann wrote: > >>> This work adds BPF loader support for global data sections > >>> to libbpf. This allows to write BPF programs in more natural > >>> C-like way by being able to define global variables and const > >>> data. > >>> > >>> Back at LPC 2018 [0] we presented a first prototype which > >>> implemented support for global data sections by extending BPF > >>> syscall where union bpf_attr would get additional memory/size > >>> pair for each section passed during prog load in order to later > >>> add this base address into the ldimm64 instruction along with > >>> the user provided offset when accessing a variable. Consensus > >>> from LPC was that for proper upstream support, it would be > >>> more desirable to use maps instead of bpf_attr extension as > >>> this would allow for introspection of these sections as well > >>> as potential life updates of their content. This work follows > >>> this path by taking the following steps from loader side: > >>> > >>> 1) In bpf_object__elf_collect() step we pick up ".data", > >>> ".rodata", and ".bss" section information. > >>> > >>> 2) If present, in bpf_object__init_global_maps() we create > >>> a map that corresponds to each of the present sections. > >>> Given section size and access properties can differ, a > >>> single entry array map is created with value size that > >>> is corresponding to the ELF section size of .data, .bss > >>> or .rodata. In the latter case, the map is created as > >>> read-only from program side such that verifier rejects > >>> any write attempts into .rodata. In a subsequent step, > >>> for .data and .rodata sections, the section content is > >>> copied into the map through bpf_map_update_elem(). For > >>> .bss this is not necessary since array map is already > >>> zero-initialized by default. > >>> > >>> 3) In bpf_program__collect_reloc() step, we record the > >>> corresponding map, insn index, and relocation type for > >>> the global data. > >>> > >>> 4) And last but not least in the actual relocation step in > >>> bpf_program__relocate(), we mark the ldimm64 instruction > >>> with src_reg = BPF_PSEUDO_MAP_VALUE where in the first > >>> imm field the map's file descriptor is stored as similarly > >>> done as in BPF_PSEUDO_MAP_FD, and in the second imm field > >>> (as ldimm64 is 2-insn wide) we store the access offset > >>> into the section. > >>> > >>> 5) On kernel side, this special marked BPF_PSEUDO_MAP_VALUE > >>> load will then store the actual target address in order > >>> to have a 'map-lookup'-free access. That is, the actual > >>> map value base address + offset. The destination register > >>> in the verifier will then be marked as PTR_TO_MAP_VALUE, > >>> containing the fixed offset as reg->off and backing BPF > >>> map as reg->map_ptr. Meaning, it's treated as any other > >>> normal map value from verification side, only with > >>> efficient, direct value access instead of actual call to > >>> map lookup helper as in the typical case. > >>> > >>> Simple example dump of program using globals vars in each > >>> section: > >>> > >>> # readelf -a test_global_data.o > >>> [...] > >>> [ 6] .bss NOBITS 0000000000000000 00000328 > >>> 0000000000000010 0000000000000000 WA 0 0 8 > >>> [ 7] .data PROGBITS 0000000000000000 00000328 > >>> 0000000000000010 0000000000000000 WA 0 0 8 > >>> [ 8] .rodata PROGBITS 0000000000000000 00000338 > >>> 0000000000000018 0000000000000000 A 0 0 8 > >>> [...] > >>> 95: 0000000000000000 8 OBJECT LOCAL DEFAULT 6 static_bss > >>> 96: 0000000000000008 8 OBJECT LOCAL DEFAULT 6 static_bss2 > >>> 97: 0000000000000000 8 OBJECT LOCAL DEFAULT 7 static_data > >>> 98: 0000000000000008 8 OBJECT LOCAL DEFAULT 7 static_data2 > >>> 99: 0000000000000000 8 OBJECT LOCAL DEFAULT 8 static_rodata > >>> 100: 0000000000000008 8 OBJECT LOCAL DEFAULT 8 static_rodata2 > >>> 101: 0000000000000010 8 OBJECT LOCAL DEFAULT 8 static_rodata3 > >>> [...] > >>> > >>> # bpftool prog > >>> 103: sched_cls name load_static_dat tag 37a8b6822fc39a29 gpl > >>> loaded_at 2019-02-28T02:02:35+0000 uid 0 > >>> xlated 712B jited 426B memlock 4096B map_ids 63,64,65,66 > >>> # bpftool map show id 63 > >>> 63: array name .bss flags 0x0 <-- .bss area, rw > >>> key 4B value 16B max_entries 1 memlock 4096B > >>> # bpftool map show id 64 > >>> 64: array name .data flags 0x0 <-- .data area, rw > >>> key 4B value 16B max_entries 1 memlock 4096B > >>> # bpftool map show id 65 > >>> 65: array name .rodata flags 0x80 <-- .rodata area, ro > >>> key 4B value 24B max_entries 1 memlock 4096B > >>> > >>> # bpftool prog dump xlated id 103 > >>> int load_static_data(struct __sk_buff * skb): > >>> ; int load_static_data(struct __sk_buff *skb) > >>> 0: (b7) r1 = 0 > >>> ; key = 0; > >>> 1: (63) *(u32 *)(r10 -4) = r1 > >>> 2: (bf) r6 = r10 > >>> ; int load_static_data(struct __sk_buff *skb) > >>> 3: (07) r6 += -4 > >>> ; bpf_map_update_elem(&result, &key, &static_bss, 0); > >>> 4: (18) r1 = map[id:66] > >>> 6: (bf) r2 = r6 > >>> 7: (18) r3 = map[id:63][0]+0 <-- direct static_bss addr in .bss area > >>> 9: (b7) r4 = 0 > >>> 10: (85) call array_map_update_elem#99888 > >>> 11: (b7) r1 = 1 > >>> ; key = 1; > >>> 12: (63) *(u32 *)(r10 -4) = r1 > >>> ; bpf_map_update_elem(&result, &key, &static_data, 0); > >>> 13: (18) r1 = map[id:66] > >>> 15: (bf) r2 = r6 > >>> 16: (18) r3 = map[id:64][0]+0 <-- direct static_data addr in .data area > >>> 18: (b7) r4 = 0 > >>> 19: (85) call array_map_update_elem#99888 > >>> 20: (b7) r1 = 2 > >>> ; key = 2; > >>> 21: (63) *(u32 *)(r10 -4) = r1 > >>> ; bpf_map_update_elem(&result, &key, &static_rodata, 0); > >>> 22: (18) r1 = map[id:66] > >>> 24: (bf) r2 = r6 > >>> 25: (18) r3 = map[id:65][0]+0 <-- direct static_rodata addr in .rodata area > >>> 27: (b7) r4 = 0 > >>> 28: (85) call array_map_update_elem#99888 > >>> 29: (b7) r1 = 3 > >>> ; key = 3; > >>> 30: (63) *(u32 *)(r10 -4) = r1 > >>> ; bpf_map_update_elem(&result, &key, &static_bss2, 0); > >>> 31: (18) r7 = map[id:63][0]+8 <--. > >>> 33: (18) r1 = map[id:66] | > >>> 35: (bf) r2 = r6 | > >>> 36: (18) r3 = map[id:63][0]+8 <-- direct static_bss2 addr in .bss area > >>> 38: (b7) r4 = 0 > >>> 39: (85) call array_map_update_elem#99888 > >>> [...] > >>> > >>> For now .data/.rodata/.bss maps are not exposed via API to the > >>> user, but this could be done in a subsequent step. > >>> > >>> Based upon recent fix in LLVM, commit c0db6b6bd444 ("[BPF] Don't > >>> fail for static variables"). > >>> > >>> Joint work with Joe Stringer. > >>> > >>> [0] LPC 2018, BPF track, "ELF relocation for static data in BPF", > >>> http://vger.kernel.org/lpc-bpf2018.html#session-3 > >>> > >>> Signed-off-by: Daniel Borkmann <daniel@xxxxxxxxxxxxx> > >>> Signed-off-by: Joe Stringer <joe@xxxxxxxxxxx> > >>> --- > >>> tools/include/uapi/linux/bpf.h | 10 +- > >>> tools/lib/bpf/libbpf.c | 259 +++++++++++++++++++++++++++------ > >>> 2 files changed, 226 insertions(+), 43 deletions(-) > >>> > >>> diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h > >>> index 8884072e1a46..04b26f59b413 100644 > >>> --- a/tools/include/uapi/linux/bpf.h > >>> +++ b/tools/include/uapi/linux/bpf.h > >>> @@ -287,7 +287,7 @@ enum bpf_attach_type { > >>> [...] > >>> @@ -999,8 +1120,10 @@ bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, > >>> (long long) (rel.r_info >> 32), > >>> (long long) sym.st_value, sym.st_name); > >>> > >>> - if (sym.st_shndx != maps_shndx && sym.st_shndx != text_shndx) { > >>> - pr_warning("Program '%s' contains non-map related relo data pointing to section %u\n", > >>> + if (sym.st_shndx != maps_shndx && sym.st_shndx != text_shndx && > >>> + sym.st_shndx != data_shndx && sym.st_shndx != rodata_shndx && > >>> + sym.st_shndx != bss_shndx) { > >>> + pr_warning("Program '%s' contains unrecognized relo data pointing to section %u\n", > >>> prog->section_name, sym.st_shndx); > >>> return -LIBBPF_ERRNO__RELOC; > >>> } > >>> @@ -1045,6 +1168,30 @@ bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, > >>> prog->reloc_desc[i].type = RELO_LD64; > >>> prog->reloc_desc[i].insn_idx = insn_idx; > >>> prog->reloc_desc[i].map_idx = map_idx; > >>> + } else if (sym.st_shndx == data_shndx || > >>> + sym.st_shndx == rodata_shndx || > >>> + sym.st_shndx == bss_shndx) { > >>> + int type = (sym.st_shndx == data_shndx) ? RELO_DATA : > >>> + (sym.st_shndx == rodata_shndx) ? RELO_RODATA : > >>> + RELO_BSS; > >>> + > >>> + for (map_idx = 0; map_idx < nr_maps_global; map_idx++) { > >>> + if (maps_global[map_idx].global_type == type) { > >>> + pr_debug("relocation: find map %zd (%s) for insn %u\n", > >>> + map_idx, maps_global[map_idx].name, insn_idx); > >>> + break; > >>> + } > >>> + } > >>> + > >>> + if (map_idx >= nr_maps_global) { > >>> + pr_warning("bpf relocation: map_idx %d large than %d\n", > >>> + (int)map_idx, (int)nr_maps_global - 1); > >>> + return -LIBBPF_ERRNO__RELOC; > >>> + } > >>> + > >>> + prog->reloc_desc[i].type = type; > >>> + prog->reloc_desc[i].insn_idx = insn_idx; > >>> + prog->reloc_desc[i].map_idx = map_idx; > >>> } > >>> } > >>> return 0; > >>> @@ -1176,15 +1323,58 @@ bpf_object__probe_caps(struct bpf_object *obj) > >>> } > >>> > >>> static int > >> [...] > >>> + > >>> +static int > >>> +bpf_object__create_maps(struct bpf_object *obj) > >>> +{ > >>> unsigned int i; > >>> int err; > >>> > >>> for (i = 0; i < obj->nr_maps; i++) { > >>> struct bpf_map *map = &obj->maps[i]; > >>> - struct bpf_map_def *def = &map->def; > >>> char *cp, errmsg[STRERR_BUFSIZE]; > >>> int *pfd = &map->fd; > >>> > >>> @@ -1193,41 +1383,7 @@ bpf_object__create_maps(struct bpf_object *obj) > >>> map->name, map->fd); > >>> continue; > >>> } > >>> - > >>> - if (obj->caps.name) > >>> - create_attr.name = map->name; > >>> - create_attr.map_ifindex = map->map_ifindex; > >>> - create_attr.map_type = def->type; > >>> - create_attr.map_flags = def->map_flags; > >>> - create_attr.key_size = def->key_size; > >>> - create_attr.value_size = def->value_size; > >>> - create_attr.max_entries = def->max_entries; > >>> - create_attr.btf_fd = 0; > >>> - create_attr.btf_key_type_id = 0; > >>> - create_attr.btf_value_type_id = 0; > >>> - if (bpf_map_type__is_map_in_map(def->type) && > >>> - map->inner_map_fd >= 0) > >>> - create_attr.inner_map_fd = map->inner_map_fd; > >>> - > >>> - if (obj->btf && !bpf_map_find_btf_info(map, obj->btf)) { > >>> - create_attr.btf_fd = btf__fd(obj->btf); > >>> - create_attr.btf_key_type_id = map->btf_key_type_id; > >>> - create_attr.btf_value_type_id = map->btf_value_type_id; > >>> - } > >>> - > >>> - *pfd = bpf_create_map_xattr(&create_attr); > >>> - if (*pfd < 0 && create_attr.btf_key_type_id) { > >>> - cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); > >>> - pr_warning("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", > >>> - map->name, cp, errno); > >>> - create_attr.btf_fd = 0; > >>> - create_attr.btf_key_type_id = 0; > >>> - create_attr.btf_value_type_id = 0; > >>> - map->btf_key_type_id = 0; > >>> - map->btf_value_type_id = 0; > >>> - *pfd = bpf_create_map_xattr(&create_attr); > >>> - } > >>> - > >>> + *pfd = bpf_object__create_map(obj, map); > >>> if (*pfd < 0) { > >>> size_t j; > >>> > >>> @@ -1412,6 +1568,24 @@ bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) > >>> &prog->reloc_desc[i]); > >>> if (err) > >>> return err; > >>> + } else if (prog->reloc_desc[i].type == RELO_DATA || > >>> + prog->reloc_desc[i].type == RELO_RODATA || > >>> + prog->reloc_desc[i].type == RELO_BSS) { > >>> + struct bpf_insn *insns = prog->insns; > >>> + int insn_idx, map_idx, data_off; > >>> + > >>> + insn_idx = prog->reloc_desc[i].insn_idx; > >>> + map_idx = prog->reloc_desc[i].map_idx; > >>> + data_off = insns[insn_idx].imm; > >> > >> I want to point to a subtle difference here between handling pure global > >> variables and static global variables. The "imm" value is only available > >> for static variables. For example, > >> > >> -bash-4.4$ cat g.c > >> static volatile long sg = 2; > >> static volatile int si = 3; > >> long g = 4; > >> int i = 5; > >> int test() { return sg + si + g + i; } > >> -bash-4.4$ > >> -bash-4.4$ clang -target bpf -O2 -c g.c > >> > >> -bash-4.4$ readelf -s g.o > >> > >> > >> Symbol table '.symtab' contains 8 entries: > >> Num: Value Size Type Bind Vis Ndx Name > >> 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND > >> 1: 0000000000000000 0 FILE LOCAL DEFAULT ABS g.c > >> 2: 0000000000000010 8 OBJECT LOCAL DEFAULT 4 sg > >> 3: 0000000000000018 4 OBJECT LOCAL DEFAULT 4 si > >> 4: 0000000000000000 0 SECTION LOCAL DEFAULT 4 > >> 5: 0000000000000000 8 OBJECT GLOBAL DEFAULT 4 g > >> 6: 0000000000000008 4 OBJECT GLOBAL DEFAULT 4 i > >> 7: 0000000000000000 128 FUNC GLOBAL DEFAULT 2 test > >> -bash-4.4$ > >> -bash-4.4$ llvm-readelf -r g.o > >> > >> Relocation section '.rel.text' at offset 0x1d8 contains 4 entries: > >> Offset Info Type Symbol's > >> Value Symbol's Name > >> 0000000000000000 0000000400000001 R_BPF_64_64 > >> 0000000000000000 .data > >> 0000000000000018 0000000400000001 R_BPF_64_64 > >> 0000000000000000 .data > >> 0000000000000038 0000000500000001 R_BPF_64_64 0000000000000000 g > >> 0000000000000058 0000000600000001 R_BPF_64_64 0000000000000008 i > >> -bash-4.4$ llvm-objdump -d g.o > >> > >> g.o: file format ELF64-BPF > >> > >> Disassembly of section .text: > >> 0000000000000000 test: > >> 0: 18 01 00 00 10 00 00 00 00 00 00 00 00 00 00 00 > >> r1 = 16 ll > >> 2: 79 11 00 00 00 00 00 00 r1 = *(u64 *)(r1 + 0) > >> 3: 18 02 00 00 18 00 00 00 00 00 00 00 00 00 00 00 > >> r2 = 24 ll > >> 5: 61 22 00 00 00 00 00 00 r2 = *(u32 *)(r2 + 0) > >> 6: 0f 21 00 00 00 00 00 00 r1 += r2 > >> 7: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > >> r2 = 0 ll > >> 9: 79 22 00 00 00 00 00 00 r2 = *(u64 *)(r2 + 0) > >> 10: 0f 21 00 00 00 00 00 00 r1 += r2 > >> 11: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > >> r2 = 0 ll > >> 13: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0) > >> 14: 0f 10 00 00 00 00 00 00 r0 += r1 > >> 15: 95 00 00 00 00 00 00 00 exit > >> -bash-4.4$ > >> > >> You can see the above, the non-static global access does not have its > >> in-section offset encoded in the insn itself. The difference is due to > >> llvm treating static global and non-static global differently. > >> > >> To support both cases, during relocation recording stage, you can > >> also record: > >> . symbol binding (GELF_ST_BIND(sym.st_info)), > >> non-static global has binding STB_GLOBAL and static > >> global has binding STB_LOCAL > >> . symbol value (sym.st_value) > >> > >> During the above relocation resolution, if symbol bind is local, do > >> what you already did here. If symbol bind is global, assign data_off > >> with symbol value. > >> > >> This applied to both .data and .rodata sections. > >> > >> The non initialized > >> global variable will not be in any allocated section in ELF file, > >> it is in a COM section which is to be allocated by loader. > >> So user defines some like > >> int g; > >> and later on uses it. Right now, it will not work. The workaround > >> is "int g = 4", or "static int g". I guess it should be > >> okay, we should encourage users to use "static" variables instead. > > > > Would it be reasonable to just plain disable usage of uninitialized > > global variables, as it kind of goes against BPF's philosophy that > > everything should be written to, before can be read? So while we can > > just implicitly zero-out everything beforehand, it might be a good > > idea to remind and enforce that explictly? > > There will be a verifier error, so the program with "int g" will not > run, the same as today. Yeah, I understand, but with pretty obscure error about not supporting relocations and stuff, right? > > We could improve by flagging the error at compiler error or libbpf time. So that's my point, that having compiler emit nicer error for target=bpf would be nice touch to user experience :) > But it is not required. I am mentioning just for completeness. > > > > >> > >>> + > >>> + if (insn_idx + 1 >= (int)prog->insns_cnt) { > >>> + pr_warning("relocation out of range: '%s'\n", > >>> + prog->section_name); > >>> + return -LIBBPF_ERRNO__RELOC; > >>> + } > >>> + insns[insn_idx].src_reg = BPF_PSEUDO_MAP_VALUE; > >>> + insns[insn_idx].imm = obj->maps_global[map_idx].fd; > >>> + insns[insn_idx + 1].imm = data_off; > >>> } > >>> } > >>> > >>> @@ -1717,6 +1891,7 @@ __bpf_object__open(const char *path, void *obj_buf, size_t obj_buf_sz, > >>> > >>> CHECK_ERR(bpf_object__elf_init(obj), err, out); > >>> CHECK_ERR(bpf_object__check_endianness(obj), err, out); > >>> + CHECK_ERR(bpf_object__probe_caps(obj), err, out); > >>> CHECK_ERR(bpf_object__elf_collect(obj, flags), err, out); > >>> CHECK_ERR(bpf_object__collect_reloc(obj), err, out); > >>> CHECK_ERR(bpf_object__validate(obj, needs_kver), err, out); > >>> @@ -1789,7 +1964,8 @@ int bpf_object__unload(struct bpf_object *obj) > >>> > >>> for (i = 0; i < obj->nr_maps; i++) > >>> zclose(obj->maps[i].fd); > >>> - > >>> + for (i = 0; i < obj->nr_maps_global; i++) > >>> + zclose(obj->maps_global[i].fd); > >>> for (i = 0; i < obj->nr_programs; i++) > >>> bpf_program__unload(&obj->programs[i]); > >>> > >>> @@ -1810,7 +1986,6 @@ int bpf_object__load(struct bpf_object *obj) > >>> > >>> obj->loaded = true; > >>> > >>> - CHECK_ERR(bpf_object__probe_caps(obj), err, out); > >>> CHECK_ERR(bpf_object__create_maps(obj), err, out); > >>> CHECK_ERR(bpf_object__relocate(obj), err, out); > >>> CHECK_ERR(bpf_object__load_progs(obj), err, out); > >>>