
Graphics virtualisation for automotive

Daniel Stone
Graphics Lead, Collabora @ London, UK
daniels@collabora.com

mailto:daniels@collabora.com

Open FirstOpen First

Hi, I’m Daniel

Graphics lead at Collabora (2008)
Open-source mainline graphics
Mesa, Wayland, Linux kernel
Collabora are core VirGL engineers

3

Agenda points
● Automotive requirements for virtualised graphics

● Design and current status of mainline VirGL solution

● Summary of different virtualisation approaches

● Potential future developments

● Open discussion forum

4

Automotive requirements

5

Need for graphics virtualisation
● Instrument cluster and IVI displays both require advanced
graphics functionality

● Functional integration and BoM requirements for single-
silicon approach

● Graphics functionality must have high assurance level for
safety certification requirements

● Graphics functionality must have high performance level
for OEM and end-user requirements

● Architecture and platform must be long-term sustainable

6

Need for graphics virtualisation
● And a lot more besides but the expert group are already …
the experts on this topic :)

7

VirGL architecture and status

8

VirGL design and architecture
● Three core VirGL components
● Guest

– Mesa-based, provides OpenGL / GLES / EGL
– Compresses GL commands into efficient pipelines

● Transport
– VirtIO-GPU protocol transports commands, shaders

● Host
– Translates VirtIO-GPU stream into replayable commands
– virglrenderer translates into GL/GLES

9

VirGL design

10

VirGL architecture: guest
● Using industry-standard Mesa/Gallium3D framework
● Mesa high level implements OpenGL / GLES / EGL APIs
● ‘state tracker’ translates Khronos API into Gallium3D ‘pipe’
● Gallium3D tracks verbose OpenGL state, compresses into
persistent state objects (shaders, blend state, etc)

– Similar to Vulkan (VkPipeline) approach: efficient for drivers and hardware
● Draw calls reference state objects
● Compiles shaders to TGSI intermediate representation
● Submits state objects and draw calls to VirGL

11

VirGL architecture: VirtIO-GPU
● OASIS standard transport layer using VirtIO
● Handles memory allocation, object tracking, command
execution, synchronisation

● Guest allocates and transfers state objects, host tracks
allocations

● Guest binds state objects to context
● Guest submits draw commands
● Host executes draw commands
● Guest can synchronise against command completion

12

VirGL architecture: host
● virglrender library used by hypervisor (QEMU, crosvm)
● Hypervisor implements resource and context allocation
● virglrenderer translates efficient VirtIO protocol into OpenGL
/ GLES commands

● Effectively mirrors guest commands by replaying them on
top of existing driver

● Works with GL/GLES conformant host drivers (Arm Mali,
Mesa, NVIDIA, etc)

13

VirGL status
● Implements OpenGL 4.3, OpenGL ES 3.2

– Support for OpenGL 4.5 in development
● May provide layered support beyond what host provides, e.g.
OpenGL guest on OpenGL ES host

● Focused performance work has provided massive
improvement

– AAA game & industry benchmark workloads at 70-80% of native performance
● Shipped as part of ChromeOS for guest environments, with
Rust-based crosvm hypervisor

14

VirGL status
● Supports complicated mixed environments
● Wayland fully supported in both host and guest
environments

● Possible to integrate guests seamlessly into host window
system without explicit host knowledge

● Support for complicated guest window systems (e.g. full
Android or native UI environment, browsers with WebGL)

15

Alternative approaches

16

Overview of alternative approaches
● Three primary approaches to virtualised graphics
● Direct hardware access: guest has full access to hardware

– Most performant solution; little or no performance penalty to native access
– Relies on hardware vendor security (e.g. hard partitioning between worlds)

● Mediated hardware access: host provides limited access
– Intermediate performance: commands, events must pass through translation layer
– Reliant on vendor security of both raw hardware and hypervisor/kernel translation

● API layering: host provides no hardware access
– Lower performance compared to hardware options
– Not reliant on hardware security: security is enforced via Khronos APIs
– Maximum compatibility

17

Tradeoffs of
graphics

virtualisation
designs

18

Alternate approaches in the market
● Direct hardware access

– Offered by Imagination PowerVR RGX; hardware partitioning enforced via closed-
source vendor microcode

– Arm Mali suggesting this approach is now possible with Valhall
● Mediated hardware access

– Offered by Intel GVT-g; hardware context separation used with modifications to
host & guest kernel drivers to forward commands

– Similar design offered by NVIDIA/Xen
● API streaming

– VirGL/VirtIO-GPU leading solution for GL/GLES on GL/GLES; Vulkan support in
development

19

Potential future directions

20

Potential future directions
● Open solutions are important to Collabora and the industry
● OEMs and tier-1s must reconcile the challenge of diverse
SKU portfolio vs. integrated platform architecture

● Our challenge – can we:
– help vendors unlock product value with high performance and functionality

– help OEMs and tier-1s reduce maintenance cost with high portability

– help the open-source ecosystem with an open community effort

● So far these these tradeoffs have been mutually exclusive!

21

Future basis: graphics standards
● Vulkan and SPIR-V provide a strong baseline

– Vulkan designed for high performance, unlocking hardware potential with low
overhead API

– Tight specification, strict conformance testing, and validation layers enable high
assurance execution

– SPIR-V provides tightly-specified efficient intermediate transport
– Mature tooling provides powerful development support
– Khronos standards governance ensures open community foundation

● These attributes improve on existing solutions in more than

one dimension

22

Future basis: layering on Vulkan
● Using Vulkan as the baseline does not mean only exposing
Vulkan

● Vulkan can serve as the basis for:
– OpenGL / OpenGL ES: Zink (Collabora)

– OpenCL: clspv/clvk (Google)

– DirectX: dxvk (Valve)

● Use Vulkan as host baseline, other API support within guest

23

Vulkan:
designed for

portability and
layering

24

Future basis: efficient transport
● io_uring kernel API added to allow hyper-efficient command
transport between kernel and userspace

● Initially used for disk I/O operations but now seeing wider
use

● Red Hat experimenting with bridging io_uring in guest
kernel through VirtIO

● Graphics commands naturally expressed as command
queue

● Can we build the most efficient transport?

25

Future basis: a new start?
● build on Vulkan and SPIR-V in the host for low overhead,

high assurance execution
● virtualise io_uring as a hyper efficient transport
● offer Vulkan, OpenGL / GLES and other APIs in the guest for

maximum compatibility
● build this as a genuine community effort involving all
stakeholders

● achieve the best possible tradeoff between end user,
product vendor, platform vendor, open-source community

26

Open discussion

27

Thank you!
daniels@collabora.com

mailto:daniels@collabora.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Developing better technologies_clipboard0
	Slide 24
	Slide 25
	Slide 26
	Slide 27

