
database.design.webserver.odt

1 / 2

basic info about the application
application : exe
running on linux
X86 64 bit server
docker containers
3 copies of the database synchronized via kafka : 1 as master, 2 as slaves

use of the webserver
we need a webserver to act as a gateway of a cpp exe with an embedded key value

the webserver, as well as the kv itself, will be embedded in the same exe
webserver acting as a classic webserver

no load balancing
no reverse proxy
no caching
only request processing

specs of the webserver
1 main thread

the main thread accepts connections and distributes them among the queue of each 
worker
no connection to PHP, ..
the request are distributed to workers depending the command type

N workers 
the workers are the threads of the webserver
usually READ1, READ2, WRITE, MAIN, SUBMIT, REP
each worker has access to the C++ classes needed to access the KV database

queues per worker
each worker with its own queue and only one
sequential processing of the requests in the queue

each worker don´t start a new request until the one in process is finished
no callback, ..

other specs
HTTP 1.1
UTF-8
IPv6
requests via REST
only 1 port : 80

process of a request
the webserver main thread gets a request
the main thread of the webserver parses the request and gets the cmd

if the command starts with W(rite)
if the server is in master state

passes the request to the Write queue (write thread)
activates the event in this worker

if the webserver is in slave mode
return the request with status = XX

if the command starts with S(ubmit)
passes the request to the Submit queue (submit thread)
activates the event in this worker

if the command starts with M(ain)
passes the request to the Main queue (main thread)
activates the event in this worker



database.design.webserver.odt

2 / 2

if the command starts with G(et)
if the webserver is in slave mode

return the request with status = XX
if the server is in master state

does random of 1 and total number of read workers, usually 2
get the random number 
passes the request to the associated read queue (read1, read2)
activates the event in this worker

if the command starts with [THXXX] (the XX indicates the queue number & 
thread)

//request sent to a specific queue
passes the cmd to the XX queue & thread
the cmd could be

slot commando
master slave mode command

activates the event in this worker
if the command starts with R(eporting)

passes the request to the Main queue (main thread)
activates the event in this worker

if the command starts with [K]  
//used for Kafka 
//kafka changes the mode of each replicated server
stores the variable of the cmd in the webserver

all these threads access the kv database
the threads process the command + data in json
the threads answer with another json
the webserver resend the answer and closes the socket

load related specs
the request are all data oriented

no files, no images, no caching, no web page processing,  …
type of requests

all string & number comparison 
low resource needed per request

usually less than 1 mseg per request (except requests with big swapping)
request load

max 2.000 request per second (adding all the threads)
usually few hundreds request per second

request origin
the webserver will work in the internal part of the datacenter : the request send 
to the kv database will be generated by other nodejs and PHP servers

webserver footprint
the webserver don´t need all the functions and security levels usually associated with a 
generic webserver
I would prefer a small as possible

no compression (gzip, ..)
no authentication
no SSL
no files downloading
no ..

Is convenient to take out all the NOT needed code or is better to maintain the actual 
footprint (no code modification) to avoid potential errors ?


