Re: [PATCH] drm/amd/powerplay: Delete unused function and maths library

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Sun, Sep 29, 2024 at 5:28 PM <linux@xxxxxxxxxxx> wrote:
>
> From: "Dr. David Alan Gilbert" <linux@xxxxxxxxxxx>
>
> We start with the function 'atomctrl_calculate_voltage_evv_on_sclk'
> which has been unused since 2016's commit
> e805ed83ba1c ("drm/amd/powerplay: delete useless files.")
>
> Remove it.
>
> It was the last user of the struct ATOM_ASIC_PROFILING_INFO_V3_4
> remove it.

Thanks.  I've applied the patch, but left the atombios.h structure in
place as it documents the vbios firmware data table structure which
might be useful for debugging.

Alex

>
> It was also the last user of the entire fixed point maths library in
> ppevvmath.h.
>
> Remove it.
>
> Signed-off-by: Dr. David Alan Gilbert <linux@xxxxxxxxxxx>
> ---
>  drivers/gpu/drm/amd/include/atombios.h        |  72 ---
>  .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.c   | 428 -------------
>  .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.h   |   2 -
>  .../drm/amd/pm/powerplay/hwmgr/ppevvmath.h    | 561 ------------------
>  4 files changed, 1063 deletions(-)
>  delete mode 100644 drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
>
> diff --git a/drivers/gpu/drm/amd/include/atombios.h b/drivers/gpu/drm/amd/include/atombios.h
> index b78360a71bc9..e810366a3c83 100644
> --- a/drivers/gpu/drm/amd/include/atombios.h
> +++ b/drivers/gpu/drm/amd/include/atombios.h
> @@ -5432,78 +5432,6 @@ typedef struct  _ATOM_ASIC_PROFILING_INFO_V3_3
>    ULONG  ulSDCMargine;
>  }ATOM_ASIC_PROFILING_INFO_V3_3;
>
> -// for Fiji speed EVV algorithm
> -typedef struct  _ATOM_ASIC_PROFILING_INFO_V3_4
> -{
> -  ATOM_COMMON_TABLE_HEADER         asHeader;
> -  ULONG  ulEvvLkgFactor;
> -  ULONG  ulBoardCoreTemp;
> -  ULONG  ulMaxVddc;
> -  ULONG  ulMinVddc;
> -  ULONG  ulLoadLineSlop;
> -  ULONG  ulLeakageTemp;
> -  ULONG  ulLeakageVoltage;
> -  EFUSE_LINEAR_FUNC_PARAM sCACm;
> -  EFUSE_LINEAR_FUNC_PARAM sCACb;
> -  EFUSE_LOGISTIC_FUNC_PARAM sKt_b;
> -  EFUSE_LOGISTIC_FUNC_PARAM sKv_m;
> -  EFUSE_LOGISTIC_FUNC_PARAM sKv_b;
> -  USHORT usLkgEuseIndex;
> -  UCHAR  ucLkgEfuseBitLSB;
> -  UCHAR  ucLkgEfuseLength;
> -  ULONG  ulLkgEncodeLn_MaxDivMin;
> -  ULONG  ulLkgEncodeMax;
> -  ULONG  ulLkgEncodeMin;
> -  ULONG  ulEfuseLogisticAlpha;
> -  USHORT usPowerDpm0;
> -  USHORT usPowerDpm1;
> -  USHORT usPowerDpm2;
> -  USHORT usPowerDpm3;
> -  USHORT usPowerDpm4;
> -  USHORT usPowerDpm5;
> -  USHORT usPowerDpm6;
> -  USHORT usPowerDpm7;
> -  ULONG  ulTdpDerateDPM0;
> -  ULONG  ulTdpDerateDPM1;
> -  ULONG  ulTdpDerateDPM2;
> -  ULONG  ulTdpDerateDPM3;
> -  ULONG  ulTdpDerateDPM4;
> -  ULONG  ulTdpDerateDPM5;
> -  ULONG  ulTdpDerateDPM6;
> -  ULONG  ulTdpDerateDPM7;
> -  EFUSE_LINEAR_FUNC_PARAM sRoFuse;
> -  ULONG  ulEvvDefaultVddc;
> -  ULONG  ulEvvNoCalcVddc;
> -  USHORT usParamNegFlag;
> -  USHORT usSpeed_Model;
> -  ULONG  ulSM_A0;
> -  ULONG  ulSM_A1;
> -  ULONG  ulSM_A2;
> -  ULONG  ulSM_A3;
> -  ULONG  ulSM_A4;
> -  ULONG  ulSM_A5;
> -  ULONG  ulSM_A6;
> -  ULONG  ulSM_A7;
> -  UCHAR  ucSM_A0_sign;
> -  UCHAR  ucSM_A1_sign;
> -  UCHAR  ucSM_A2_sign;
> -  UCHAR  ucSM_A3_sign;
> -  UCHAR  ucSM_A4_sign;
> -  UCHAR  ucSM_A5_sign;
> -  UCHAR  ucSM_A6_sign;
> -  UCHAR  ucSM_A7_sign;
> -  ULONG ulMargin_RO_a;
> -  ULONG ulMargin_RO_b;
> -  ULONG ulMargin_RO_c;
> -  ULONG ulMargin_fixed;
> -  ULONG ulMargin_Fmax_mean;
> -  ULONG ulMargin_plat_mean;
> -  ULONG ulMargin_Fmax_sigma;
> -  ULONG ulMargin_plat_sigma;
> -  ULONG ulMargin_DC_sigma;
> -  ULONG ulReserved[8];            // Reserved for future ASIC
> -}ATOM_ASIC_PROFILING_INFO_V3_4;
> -
>  // for  Polaris10/Polaris11 speed EVV algorithm
>  typedef struct  _ATOM_ASIC_PROFILING_INFO_V3_5
>  {
> diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
> index b56298d9da98..fe24219c3bf4 100644
> --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
> +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c
> @@ -28,7 +28,6 @@
>  #include "ppatomctrl.h"
>  #include "atombios.h"
>  #include "cgs_common.h"
> -#include "ppevvmath.h"
>
>  #define MEM_ID_MASK           0xff000000
>  #define MEM_ID_SHIFT          24
> @@ -677,433 +676,6 @@ bool atomctrl_get_pp_assign_pin(
>         return bRet;
>  }
>
> -int atomctrl_calculate_voltage_evv_on_sclk(
> -               struct pp_hwmgr *hwmgr,
> -               uint8_t voltage_type,
> -               uint32_t sclk,
> -               uint16_t virtual_voltage_Id,
> -               uint16_t *voltage,
> -               uint16_t dpm_level,
> -               bool debug)
> -{
> -       ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
> -       struct amdgpu_device *adev = hwmgr->adev;
> -       EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
> -       EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
> -       EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
> -       EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
> -       EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
> -       EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
> -       EFUSE_INPUT_PARAMETER sInput_FuseValues;
> -       READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
> -
> -       uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
> -       fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
> -       fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
> -       fInt fLkg_FT, repeat;
> -       fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
> -       fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
> -       fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
> -       fInt fSclk_margin, fSclk, fEVV_V;
> -       fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
> -       uint32_t ul_FT_Lkg_V0NORM;
> -       fInt fLn_MaxDivMin, fMin, fAverage, fRange;
> -       fInt fRoots[2];
> -       fInt fStepSize = GetScaledFraction(625, 100000);
> -
> -       int result;
> -
> -       getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
> -                       smu_atom_get_data_table(hwmgr->adev,
> -                                       GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
> -                                       NULL, NULL, NULL);
> -
> -       if (!getASICProfilingInfo)
> -               return -1;
> -
> -       if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
> -           (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
> -            getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
> -               return -1;
> -
> -       /*-----------------------------------------------------------
> -        *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
> -        *-----------------------------------------------------------
> -        */
> -       fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
> -
> -       switch (dpm_level) {
> -       case 1:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
> -               break;
> -       case 2:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
> -               break;
> -       case 3:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
> -               break;
> -       case 4:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
> -               break;
> -       case 5:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
> -               break;
> -       case 6:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
> -               break;
> -       case 7:
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
> -               break;
> -       default:
> -               pr_err("DPM Level not supported\n");
> -               fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
> -       }
> -
> -       /*-------------------------
> -        * DECODING FUSE VALUES
> -        * ------------------------
> -        */
> -       /*Decode RO_Fused*/
> -       sRO_fuse = getASICProfilingInfo->sRoFuse;
> -
> -       sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
> -       sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
> -
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -
> -       if (result)
> -               return result;
> -
> -       /* Finally, the actual fuse value */
> -       ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
> -       fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
> -       fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
> -
> -       sCACm_fuse = getASICProfilingInfo->sCACm;
> -
> -       sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
> -       sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
> -
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -
> -       if (result)
> -               return result;
> -
> -       ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
> -       fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
> -
> -       fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
> -
> -       sCACb_fuse = getASICProfilingInfo->sCACb;
> -
> -       sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
> -       sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -
> -       if (result)
> -               return result;
> -
> -       ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
> -       fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
> -
> -       fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
> -
> -       sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
> -
> -       sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
> -       sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
> -
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -
> -       if (result)
> -               return result;
> -
> -       ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
> -       fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
> -
> -       fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
> -                       fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
> -
> -       sKv_m_fuse = getASICProfilingInfo->sKv_m;
> -
> -       sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
> -       sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
> -
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -       if (result)
> -               return result;
> -
> -       ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
> -       fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
> -       fRange = fMultiply(fRange, ConvertToFraction(-1));
> -
> -       fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
> -                       fAverage, fRange, sKv_m_fuse.ucEfuseLength);
> -
> -       sKv_b_fuse = getASICProfilingInfo->sKv_b;
> -
> -       sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
> -       sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -
> -       if (result)
> -               return result;
> -
> -       ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
> -       fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
> -
> -       fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
> -                       fAverage, fRange, sKv_b_fuse.ucEfuseLength);
> -
> -       /* Decoding the Leakage - No special struct container */
> -       /*
> -        * usLkgEuseIndex=56
> -        * ucLkgEfuseBitLSB=6
> -        * ucLkgEfuseLength=10
> -        * ulLkgEncodeLn_MaxDivMin=69077
> -        * ulLkgEncodeMax=1000000
> -        * ulLkgEncodeMin=1000
> -        * ulEfuseLogisticAlpha=13
> -        */
> -
> -       sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
> -       sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
> -       sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
> -
> -       sOutput_FuseValues.sEfuse = sInput_FuseValues;
> -
> -       result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
> -                       GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
> -                       (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues));
> -
> -       if (result)
> -               return result;
> -
> -       ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
> -       fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
> -       fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
> -
> -       fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
> -                       fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
> -       fLkg_FT = fFT_Lkg_V0NORM;
> -
> -       /*-------------------------------------------
> -        * PART 2 - Grabbing all required values
> -        *-------------------------------------------
> -        */
> -       fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
> -       fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
> -       fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
> -       fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
> -       fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
> -       fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
> -       fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
> -       fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
> -                       ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
> -
> -       fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
> -       fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
> -       fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
> -
> -       fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
> -
> -       fMargin_FMAX_mean = GetScaledFraction(
> -               le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
> -       fMargin_Plat_mean = GetScaledFraction(
> -               le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
> -       fMargin_FMAX_sigma = GetScaledFraction(
> -               le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
> -       fMargin_Plat_sigma = GetScaledFraction(
> -               le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
> -
> -       fMargin_DC_sigma = GetScaledFraction(
> -               le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
> -       fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
> -
> -       fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
> -       fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
> -       fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
> -       fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
> -       fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
> -
> -       fSclk = GetScaledFraction(sclk, 100);
> -
> -       fV_max = fDivide(GetScaledFraction(
> -                                le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
> -       fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
> -       fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
> -       fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
> -       fV_FT = fDivide(GetScaledFraction(
> -                               le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
> -       fV_min = fDivide(GetScaledFraction(
> -                                le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
> -
> -       /*-----------------------
> -        * PART 3
> -        *-----------------------
> -        */
> -
> -       fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
> -       fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
> -       fC_Term = fAdd(fMargin_RO_c,
> -                       fAdd(fMultiply(fSM_A0, fLkg_FT),
> -                       fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
> -                       fAdd(fMultiply(fSM_A3, fSclk),
> -                       fSubtract(fSM_A7, fRO_fused)))));
> -
> -       fVDDC_base = fSubtract(fRO_fused,
> -                       fSubtract(fMargin_RO_c,
> -                                       fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
> -       fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
> -
> -       repeat = fSubtract(fVDDC_base,
> -                       fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
> -
> -       fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
> -                       fGetSquare(repeat)),
> -                       fAdd(fMultiply(fMargin_RO_b, repeat),
> -                       fMargin_RO_c));
> -
> -       fDC_SCLK = fSubtract(fRO_fused,
> -                       fSubtract(fRO_DC_margin,
> -                       fSubtract(fSM_A3,
> -                       fMultiply(fSM_A2, repeat))));
> -       fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
> -
> -       fSigma_DC = fSubtract(fSclk, fDC_SCLK);
> -
> -       fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
> -       fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
> -       fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
> -       fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
> -
> -       fSquared_Sigma_DC = fGetSquare(fSigma_DC);
> -       fSquared_Sigma_CR = fGetSquare(fSigma_CR);
> -       fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
> -
> -       fSclk_margin = fAdd(fMicro_FMAX,
> -                       fAdd(fMicro_CR,
> -                       fAdd(fMargin_fixed,
> -                       fSqrt(fAdd(fSquared_Sigma_FMAX,
> -                       fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
> -       /*
> -        fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
> -        fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
> -        fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
> -        */
> -
> -       fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
> -       fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
> -       fC_Term = fAdd(fRO_DC_margin,
> -                       fAdd(fMultiply(fSM_A0, fLkg_FT),
> -                       fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
> -                       fAdd(fSclk, fSclk_margin)),
> -                       fAdd(fMultiply(fSM_A3,
> -                       fAdd(fSclk, fSclk_margin)),
> -                       fSubtract(fSM_A7, fRO_fused)))));
> -
> -       SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
> -
> -       if (GreaterThan(fRoots[0], fRoots[1]))
> -               fEVV_V = fRoots[1];
> -       else
> -               fEVV_V = fRoots[0];
> -
> -       if (GreaterThan(fV_min, fEVV_V))
> -               fEVV_V = fV_min;
> -       else if (GreaterThan(fEVV_V, fV_max))
> -               fEVV_V = fSubtract(fV_max, fStepSize);
> -
> -       fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
> -
> -       /*-----------------
> -        * PART 4
> -        *-----------------
> -        */
> -
> -       fV_x = fV_min;
> -
> -       while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
> -               fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
> -                               fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
> -                               fGetSquare(fV_x)), fDerateTDP);
> -
> -               fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
> -                               fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
> -                               fT_prod), fKv_b_fused), fV_x)), fV_x)));
> -               fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
> -                               fKt_Beta_fused, fT_prod)));
> -               fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
> -                               fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
> -               fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
> -                               fKt_Beta_fused, fT_FT)));
> -
> -               fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
> -
> -               fTDP_Current = fDivide(fTDP_Power, fV_x);
> -
> -               fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
> -                               ConvertToFraction(10)));
> -
> -               fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
> -
> -               if (GreaterThan(fV_max, fV_NL) &&
> -                       (GreaterThan(fV_NL, fEVV_V) ||
> -                       Equal(fV_NL, fEVV_V))) {
> -                       fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
> -
> -                       *voltage = (uint16_t)fV_NL.partial.real;
> -                       break;
> -               } else
> -                       fV_x = fAdd(fV_x, fStepSize);
> -       }
> -
> -       return result;
> -}
> -
>  /**
>   * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table.
>   * @hwmgr:              input: pointer to hwManager
> diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
> index 1f987e846628..22b0ac12df97 100644
> --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
> +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h
> @@ -316,8 +316,6 @@ extern int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
>                                                  pp_atomctrl_clock_dividers_kong *dividers);
>  extern int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
>                 uint16_t end_index, uint32_t *efuse);
> -extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
> -               uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug);
>  extern int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_ai *dividers);
>  extern int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
>                                                                 uint8_t level);
> diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
> deleted file mode 100644
> index 409aeec6baa9..000000000000
> --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h
> +++ /dev/null
> @@ -1,561 +0,0 @@
> -/*
> - * Copyright 2015 Advanced Micro Devices, Inc.
> - *
> - * Permission is hereby granted, free of charge, to any person obtaining a
> - * copy of this software and associated documentation files (the "Software"),
> - * to deal in the Software without restriction, including without limitation
> - * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> - * and/or sell copies of the Software, and to permit persons to whom the
> - * Software is furnished to do so, subject to the following conditions:
> - *
> - * The above copyright notice and this permission notice shall be included in
> - * all copies or substantial portions of the Software.
> - *
> - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
> - * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
> - * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
> - * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
> - * OTHER DEALINGS IN THE SOFTWARE.
> - *
> - */
> -#include <asm/div64.h>
> -
> -enum ppevvmath_constants {
> -       /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
> -       SHIFT_AMOUNT    = 16,
> -
> -       /* Change this value to change the number of decimal places in the final output - 5 is a good default */
> -       PRECISION       =  5,
> -
> -       SHIFTED_2       = (2 << SHIFT_AMOUNT),
> -
> -       /* 32767 - Might change in the future */
> -       MAX             = (1 << (SHIFT_AMOUNT - 1)) - 1,
> -};
> -
> -/* -------------------------------------------------------------------------------
> - * NEW TYPE - fINT
> - * -------------------------------------------------------------------------------
> - * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
> - * fInt A;
> - * A.full => The full number as it is. Generally not easy to read
> - * A.partial.real => Only the integer portion
> - * A.partial.decimal => Only the fractional portion
> - */
> -typedef union _fInt {
> -    int full;
> -    struct _partial {
> -        unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
> -        int real: 32 - SHIFT_AMOUNT;
> -    } partial;
> -} fInt;
> -
> -/* -------------------------------------------------------------------------------
> - * Function Declarations
> - *  -------------------------------------------------------------------------------
> - */
> -static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
> -static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
> -static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
> -static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
> -
> -static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
> -static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
> -static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
> -static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
> -static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
> -static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
> -static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */
> -
> -static int uAbs(int);                                     /* Returns the Absolute value of the Int */
> -static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */
> -
> -static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
> -static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
> -static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */
> -
> -static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
> -static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
> -
> -/* Fuse decoding functions
> - * -------------------------------------------------------------------------------------
> - */
> -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
> -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
> -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
> -
> -/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
> - * -------------------------------------------------------------------------------------
> - * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
> - */
> -static fInt Divide (int, int);                            /* Divide two INTs and return result as FINT */
> -static fInt fNegate(fInt);
> -
> -static int uGetScaledDecimal (fInt);                      /* Internal function */
> -static int GetReal (fInt A);                              /* Internal function */
> -
> -/* -------------------------------------------------------------------------------------
> - * TROUBLESHOOTING INFORMATION
> - * -------------------------------------------------------------------------------------
> - * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
> - * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
> - * 3) fMultiply - OutputOutOfRangeException:
> - * 4) fGetSquare - OutputOutOfRangeException:
> - * 5) fDivide - DivideByZeroException
> - * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
> - */
> -
> -/* -------------------------------------------------------------------------------------
> - * START OF CODE
> - * -------------------------------------------------------------------------------------
> - */
> -static fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
> -{
> -       uint32_t i;
> -       bool bNegated = false;
> -
> -       fInt fPositiveOne = ConvertToFraction(1);
> -       fInt fZERO = ConvertToFraction(0);
> -
> -       fInt lower_bound = Divide(78, 10000);
> -       fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
> -       fInt error_term;
> -
> -       static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
> -       static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
> -
> -       if (GreaterThan(fZERO, exponent)) {
> -               exponent = fNegate(exponent);
> -               bNegated = true;
> -       }
> -
> -       while (GreaterThan(exponent, lower_bound)) {
> -               for (i = 0; i < 11; i++) {
> -                       if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
> -                               exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
> -                               solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
> -                       }
> -               }
> -       }
> -
> -       error_term = fAdd(fPositiveOne, exponent);
> -
> -       solution = fMultiply(solution, error_term);
> -
> -       if (bNegated)
> -               solution = fDivide(fPositiveOne, solution);
> -
> -       return solution;
> -}
> -
> -static fInt fNaturalLog(fInt value)
> -{
> -       uint32_t i;
> -       fInt upper_bound = Divide(8, 1000);
> -       fInt fNegativeOne = ConvertToFraction(-1);
> -       fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
> -       fInt error_term;
> -
> -       static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
> -       static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
> -
> -       while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
> -               for (i = 0; i < 10; i++) {
> -                       if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
> -                               value = fDivide(value, GetScaledFraction(k_array[i], 10000));
> -                               solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
> -                       }
> -               }
> -       }
> -
> -       error_term = fAdd(fNegativeOne, value);
> -
> -       return fAdd(solution, error_term);
> -}
> -
> -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
> -{
> -       fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
> -       fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
> -
> -       fInt f_decoded_value;
> -
> -       f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
> -       f_decoded_value = fMultiply(f_decoded_value, f_range);
> -       f_decoded_value = fAdd(f_decoded_value, f_min);
> -
> -       return f_decoded_value;
> -}
> -
> -
> -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
> -{
> -       fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
> -       fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
> -
> -       fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
> -       fInt f_CONSTANT1 = ConvertToFraction(1);
> -
> -       fInt f_decoded_value;
> -
> -       f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
> -       f_decoded_value = fNaturalLog(f_decoded_value);
> -       f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
> -       f_decoded_value = fAdd(f_decoded_value, f_average);
> -
> -       return f_decoded_value;
> -}
> -
> -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
> -{
> -       fInt fLeakage;
> -       fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
> -
> -       fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
> -       fLeakage = fDivide(fLeakage, f_bit_max_value);
> -       fLeakage = fExponential(fLeakage);
> -       fLeakage = fMultiply(fLeakage, f_min);
> -
> -       return fLeakage;
> -}
> -
> -static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
> -{
> -       fInt temp;
> -
> -       if (X <= MAX)
> -               temp.full = (X << SHIFT_AMOUNT);
> -       else
> -               temp.full = 0;
> -
> -       return temp;
> -}
> -
> -static fInt fNegate(fInt X)
> -{
> -       fInt CONSTANT_NEGONE = ConvertToFraction(-1);
> -       return fMultiply(X, CONSTANT_NEGONE);
> -}
> -
> -static fInt Convert_ULONG_ToFraction(uint32_t X)
> -{
> -       fInt temp;
> -
> -       if (X <= MAX)
> -               temp.full = (X << SHIFT_AMOUNT);
> -       else
> -               temp.full = 0;
> -
> -       return temp;
> -}
> -
> -static fInt GetScaledFraction(int X, int factor)
> -{
> -       int times_shifted, factor_shifted;
> -       bool bNEGATED;
> -       fInt fValue;
> -
> -       times_shifted = 0;
> -       factor_shifted = 0;
> -       bNEGATED = false;
> -
> -       if (X < 0) {
> -               X = -1*X;
> -               bNEGATED = true;
> -       }
> -
> -       if (factor < 0) {
> -               factor = -1*factor;
> -               bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
> -       }
> -
> -       if ((X > MAX) || factor > MAX) {
> -               if ((X/factor) <= MAX) {
> -                       while (X > MAX) {
> -                               X = X >> 1;
> -                               times_shifted++;
> -                       }
> -
> -                       while (factor > MAX) {
> -                               factor = factor >> 1;
> -                               factor_shifted++;
> -                       }
> -               } else {
> -                       fValue.full = 0;
> -                       return fValue;
> -               }
> -       }
> -
> -       if (factor == 1)
> -               return ConvertToFraction(X);
> -
> -       fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
> -
> -       fValue.full = fValue.full << times_shifted;
> -       fValue.full = fValue.full >> factor_shifted;
> -
> -       return fValue;
> -}
> -
> -/* Addition using two fInts */
> -static fInt fAdd (fInt X, fInt Y)
> -{
> -       fInt Sum;
> -
> -       Sum.full = X.full + Y.full;
> -
> -       return Sum;
> -}
> -
> -/* Addition using two fInts */
> -static fInt fSubtract (fInt X, fInt Y)
> -{
> -       fInt Difference;
> -
> -       Difference.full = X.full - Y.full;
> -
> -       return Difference;
> -}
> -
> -static bool Equal(fInt A, fInt B)
> -{
> -       if (A.full == B.full)
> -               return true;
> -       else
> -               return false;
> -}
> -
> -static bool GreaterThan(fInt A, fInt B)
> -{
> -       if (A.full > B.full)
> -               return true;
> -       else
> -               return false;
> -}
> -
> -static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
> -{
> -       fInt Product;
> -       int64_t tempProduct;
> -
> -       /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
> -       /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
> -       bool X_LessThanOne, Y_LessThanOne;
> -
> -       X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
> -       Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
> -
> -       if (X_LessThanOne && Y_LessThanOne) {
> -               Product.full = X.full * Y.full;
> -               return Product
> -       }*/
> -
> -       tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
> -       tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
> -       Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
> -
> -       return Product;
> -}
> -
> -static fInt fDivide (fInt X, fInt Y)
> -{
> -       fInt fZERO, fQuotient;
> -       int64_t longlongX, longlongY;
> -
> -       fZERO = ConvertToFraction(0);
> -
> -       if (Equal(Y, fZERO))
> -               return fZERO;
> -
> -       longlongX = (int64_t)X.full;
> -       longlongY = (int64_t)Y.full;
> -
> -       longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
> -
> -       div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
> -
> -       fQuotient.full = (int)longlongX;
> -       return fQuotient;
> -}
> -
> -static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
> -{
> -       fInt fullNumber, scaledDecimal, scaledReal;
> -
> -       scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
> -
> -       scaledDecimal.full = uGetScaledDecimal(A);
> -
> -       fullNumber = fAdd(scaledDecimal, scaledReal);
> -
> -       return fullNumber.full;
> -}
> -
> -static fInt fGetSquare(fInt A)
> -{
> -       return fMultiply(A, A);
> -}
> -
> -/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
> -static fInt fSqrt(fInt num)
> -{
> -       fInt F_divide_Fprime, Fprime;
> -       fInt test;
> -       fInt twoShifted;
> -       int seed, counter, error;
> -       fInt x_new, x_old, C, y;
> -
> -       fInt fZERO = ConvertToFraction(0);
> -
> -       /* (0 > num) is the same as (num < 0), i.e., num is negative */
> -
> -       if (GreaterThan(fZERO, num) || Equal(fZERO, num))
> -               return fZERO;
> -
> -       C = num;
> -
> -       if (num.partial.real > 3000)
> -               seed = 60;
> -       else if (num.partial.real > 1000)
> -               seed = 30;
> -       else if (num.partial.real > 100)
> -               seed = 10;
> -       else
> -               seed = 2;
> -
> -       counter = 0;
> -
> -       if (Equal(num, fZERO)) /*Square Root of Zero is zero */
> -               return fZERO;
> -
> -       twoShifted = ConvertToFraction(2);
> -       x_new = ConvertToFraction(seed);
> -
> -       do {
> -               counter++;
> -
> -               x_old.full = x_new.full;
> -
> -               test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
> -               y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
> -
> -               Fprime = fMultiply(twoShifted, x_old);
> -               F_divide_Fprime = fDivide(y, Fprime);
> -
> -               x_new = fSubtract(x_old, F_divide_Fprime);
> -
> -               error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
> -
> -               if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
> -                       return x_new;
> -
> -       } while (uAbs(error) > 0);
> -
> -       return x_new;
> -}
> -
> -static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
> -{
> -       fInt *pRoots = &Roots[0];
> -       fInt temp, root_first, root_second;
> -       fInt f_CONSTANT10, f_CONSTANT100;
> -
> -       f_CONSTANT100 = ConvertToFraction(100);
> -       f_CONSTANT10 = ConvertToFraction(10);
> -
> -       while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
> -               A = fDivide(A, f_CONSTANT10);
> -               B = fDivide(B, f_CONSTANT10);
> -               C = fDivide(C, f_CONSTANT10);
> -       }
> -
> -       temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
> -       temp = fMultiply(temp, C); /* root = 4*A*C */
> -       temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
> -       temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
> -
> -       root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
> -       root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
> -
> -       root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
> -       root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
> -
> -       root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
> -       root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
> -
> -       *(pRoots + 0) = root_first;
> -       *(pRoots + 1) = root_second;
> -}
> -
> -/* -----------------------------------------------------------------------------
> - * SUPPORT FUNCTIONS
> - * -----------------------------------------------------------------------------
> - */
> -
> -/* Conversion Functions */
> -static int GetReal (fInt A)
> -{
> -       return (A.full >> SHIFT_AMOUNT);
> -}
> -
> -static fInt Divide (int X, int Y)
> -{
> -       fInt A, B, Quotient;
> -
> -       A.full = X << SHIFT_AMOUNT;
> -       B.full = Y << SHIFT_AMOUNT;
> -
> -       Quotient = fDivide(A, B);
> -
> -       return Quotient;
> -}
> -
> -static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
> -{
> -       int dec[PRECISION];
> -       int i, scaledDecimal = 0, tmp = A.partial.decimal;
> -
> -       for (i = 0; i < PRECISION; i++) {
> -               dec[i] = tmp / (1 << SHIFT_AMOUNT);
> -               tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
> -               tmp *= 10;
> -               scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - i);
> -       }
> -
> -       return scaledDecimal;
> -}
> -
> -static int uPow(int base, int power)
> -{
> -       if (power == 0)
> -               return 1;
> -       else
> -               return (base)*uPow(base, power - 1);
> -}
> -
> -static int uAbs(int X)
> -{
> -       if (X < 0)
> -               return (X * -1);
> -       else
> -               return X;
> -}
> -
> -static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
> -{
> -       fInt solution;
> -
> -       solution = fDivide(A, fStepSize);
> -       solution.partial.decimal = 0; /*All fractional digits changes to 0 */
> -
> -       if (error_term)
> -               solution.partial.real += 1; /*Error term of 1 added */
> -
> -       solution = fMultiply(solution, fStepSize);
> -       solution = fAdd(solution, fStepSize);
> -
> -       return solution;
> -}
> -
> --
> 2.46.2
>




[Index of Archives]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]

  Powered by Linux