Running the top command on the PF now allows monitoring activity for a single VF by using [] keys and also to monitor relative assignment of each VF. Signed-off-by: Jean-Francois Thibert <jfthibert at google.com> --- src/app/top.c | 215 +++++++++++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 205 insertions(+), 10 deletions(-) diff --git a/src/app/top.c b/src/app/top.c index 359d241..366302b 100644 --- a/src/app/top.c +++ b/src/app/top.c @@ -23,8 +23,9 @@ * */ #include "umrapp.h" -#include <time.h> +#include <linux/pci_regs.h> #include <ncurses.h> +#include <time.h> static struct { int quit, @@ -48,6 +49,10 @@ static struct { } vi; char *helptext; void (*handle_key)(int ch); + struct { + int num_vf, + active_vf; + } sriov; } top_options; enum sensor_maps { @@ -70,6 +75,11 @@ enum drm_print { DRM_INFO_COUNT, }; +enum iov_print { + IOV_VF = 0, + IOV_PF = 1, +}; + static struct umr_bitfield stat_grbm_bits[] = { { "TA_BUSY", 255, 255, &umr_bitfield_default }, { "GDS_BUSY", 255, 255, &umr_bitfield_default }, @@ -100,6 +110,28 @@ static struct umr_bitfield stat_grbm2_bits[] = { { NULL, 0, 0, NULL }, }; +// The VF virtual bits are remapped from the active VF field +static struct umr_bitfield stat_rlc_iov_bits[] = { + { "VF00", 0, IOV_VF, &umr_bitfield_default }, + { "VF01", 1, IOV_VF, &umr_bitfield_default }, + { "VF02", 2, IOV_VF, &umr_bitfield_default }, + { "VF03", 3, IOV_VF, &umr_bitfield_default }, + { "VF04", 4, IOV_VF, &umr_bitfield_default }, + { "VF05", 5, IOV_VF, &umr_bitfield_default }, + { "VF06", 6, IOV_VF, &umr_bitfield_default }, + { "VF07", 7, IOV_VF, &umr_bitfield_default }, + { "VF08", 8, IOV_VF, &umr_bitfield_default }, + { "VF09", 9, IOV_VF, &umr_bitfield_default }, + { "VF0A", 10, IOV_VF, &umr_bitfield_default }, + { "VF0B", 11, IOV_VF, &umr_bitfield_default }, + { "VF0C", 12, IOV_VF, &umr_bitfield_default }, + { "VF0D", 13, IOV_VF, &umr_bitfield_default }, + { "VF0E", 14, IOV_VF, &umr_bitfield_default }, + { "VF0F", 15, IOV_VF, &umr_bitfield_default }, + { "PF_VF", 0, IOV_PF, &umr_bitfield_default }, + { NULL, 0, 0, NULL }, +}; + static struct umr_bitfield stat_uvdclk_bits[] = { { "UDEC_SCLK", 255, 255, &umr_bitfield_default }, { "MPEG2_SCLK", 255, 255, &umr_bitfield_default }, @@ -438,6 +470,37 @@ out: return (*addr == 0) ? 1 : 0; } +static int grab_addr(char *name, struct umr_asic *asic, struct umr_bitfield *bits, uint32_t *addr) +{ + int i, j, k; + + // try to find the register somewhere in the ASIC + *addr = 0; + for (i = 0; i < asic->no_blocks; i++) { + for (j = 0; j < asic->blocks[i]->no_regs; j++) { + if (strcmp(asic->blocks[i]->regs[j].regname, name) == 0) { + *addr = asic->blocks[i]->regs[j].addr<<2; + goto out; + } + } + } +out: + + // let's trim _BUSY out of the names since it's redundant + if (*addr) { + for (k = 0; bits[k].regname; k++) { + bits[k].regname = strcpy(calloc(1, strlen(bits[k].regname) + 1), bits[k].regname); + slice(bits[k].regname, "_BUSY"); + slice(bits[k].regname, "_STATUS"); + slice(bits[k].regname, "_VALUE"); + slice(bits[k].regname, "_ACTIVE"); + slice(bits[k].regname, "OUTSTANDING_"); + slice(bits[k].regname, "PGFSM_READ_"); + } + } + return (*addr == 0) ? 1 : 0; +} + static int print_j = 0; static void print_count_value(uint64_t count) @@ -546,6 +609,21 @@ static void print_drm(struct umr_bitfield *bits, uint64_t *counts) } } +static void print_iov(uint64_t *counts) +{ + int i; + for (i = 0; i < top_options.sriov.num_vf; i++) { + char custom_namefmt[30]; + snprintf(custom_namefmt, sizeof(custom_namefmt)-1, + "%%%ds(%%02d) => ", maxstrlen - 3); + printw(custom_namefmt, "VF", i); + print_count_value(counts[i]); + if ((++print_j & (top_options.wide ? 3 : 1)) != 0) + printw(" |"); + else + printw("\n"); + } +} static void parse_bits(struct umr_asic *asic, uint32_t addr, struct umr_bitfield *bits, uint64_t *counts, uint32_t *mask, uint32_t *cmp, uint64_t addr_mask) { @@ -640,6 +718,34 @@ static void parse_drm(struct umr_asic *asic, uint32_t addr, struct umr_bitfield } } +static void parse_iov(struct umr_asic *asic, uint32_t addr, struct umr_bitfield *bits, uint64_t *counts, uint32_t *mask, uint32_t *cmp, uint64_t addr_mask) +{ + int j; + uint32_t value; + + (void)mask; + (void)cmp; + + if (addr) { + if (addr_mask && asic->fd.mmio < 0) { + value = 0; + } else if (!addr_mask && asic->pci.mem) { + value = asic->pci.mem[addr>>2]; + } else { + lseek(asic->fd.mmio, addr | addr_mask, SEEK_SET); + read(asic->fd.mmio, &value, 4); + } + for (j = 0; bits[j].regname; j++) + if (bits[j].start != 255) { + if (bits[j].stop == IOV_VF) { + counts[j] += ((value & 0xF) == bits[j].start) ? 1 : 0; + } else { + counts[j] += (value & 0x80000000) ? 1 : 0; + } + } + } +} + static void grab_vram(struct umr_asic *asic) { char name[256]; @@ -804,6 +910,38 @@ static void vi_handle_keys(int i) } } +#define PCI_EXT_CAP_BASE 0x100 +#define PCI_EXT_CAP_LIMIT 0x1000 + +static int sriov_supported_vf(struct umr_asic *asic) +{ + int retval = 0; + if (!asic->pci.pdevice) + return 0; + // Verify if the SRIOV capability is listed in the pci device configuration + pciaddr_t pci_offset = PCI_EXT_CAP_BASE; + while (pci_offset && pci_offset < PCI_EXT_CAP_LIMIT) + { + uint32_t pci_cfg_data; + if (pci_device_cfg_read_u32(asic->pci.pdevice, &pci_cfg_data, pci_offset)) + return 0; + if (PCI_EXT_CAP_ID(pci_cfg_data) == PCI_EXT_CAP_ID_SRIOV) { + uint16_t sriov_ctrl; + if (pci_device_cfg_read_u16(asic->pci.pdevice, &sriov_ctrl, + pci_offset + PCI_SRIOV_CTRL)) + return 0; + uint16_t sriov_num_vf; + if (pci_device_cfg_read_u16(asic->pci.pdevice, &sriov_num_vf, + pci_offset + PCI_SRIOV_NUM_VF)) + return 0; + + return (sriov_ctrl & PCI_SRIOV_CTRL_VFE) ? sriov_num_vf : 0; + } + pci_offset = PCI_EXT_CAP_NEXT(pci_cfg_data); + } + return retval; +} + static void top_build_vi_program(struct umr_asic *asic) { int i, j, k; @@ -820,6 +958,14 @@ static void top_build_vi_program(struct umr_asic *asic) i = 2; + top_options.sriov.active_vf = -1; + top_options.sriov.num_vf = sriov_supported_vf(asic); + if (top_options.sriov.num_vf != 0) { + stat_counters[i].is_sensor = 3; + ENTRY(i++, "mmRLC_GPU_IOV_ACTIVE_FCN_ID", &stat_rlc_iov_bits[0], + &top_options.vi.grbm, "GPU_IOV"); + } + if (asic->config.gfx.family > 110) ENTRY(i++, "mmRLC_GPM_STAT", &stat_rlc_gpm_bits[0], &top_options.vi.gfxpwr, "GFX PWR"); @@ -951,6 +1097,22 @@ static uint64_t get_visible_vram_size(struct umr_asic *asic) return info.vram_cpu_accessible_size; } +int get_active_vf(struct umr_asic *asic, uint32_t addr) +{ + uint32_t value = -1; + + if (addr) { + if (asic->pci.mem) { + value = asic->pci.mem[addr>>2]; + } else { + lseek(asic->fd.mmio, addr, SEEK_SET); + read(asic->fd.mmio, &value, 4); + } + value &= 0xF; + } + return value; +} + void umr_top(struct umr_asic *asic) { int i, j, k; @@ -983,9 +1145,12 @@ void umr_top(struct umr_asic *asic) ENTRY(i, "DRM", &stat_drm_bits[0], &top_options.drm, "DRM"); stat_counters[i].is_sensor = 2; - for (i = 0; stat_counters[i].name; i++) + for (i = 0; stat_counters[i].name; i++) { if (stat_counters[i].is_sensor == 0) grab_bits(stat_counters[i].name, asic, stat_counters[i].bits, &stat_counters[i].addr); + else if (stat_counters[i].is_sensor == 3) + grab_addr(stat_counters[i].name, asic, stat_counters[i].bits, &stat_counters[i].addr); + } sensor_thread_quit = 0; @@ -1022,15 +1187,21 @@ void umr_top(struct umr_asic *asic) memset(stat_counters[i].counts, 0, sizeof(stat_counters[i].counts[0])*32); for (i = 0; i < (int)rep / (top_options.high_frequency ? 10 : 1); i++) { - for (j = 0; stat_counters[j].name; j++) - if (top_options.all || *stat_counters[j].opt) { - if (stat_counters[j].is_sensor == 0) - parse_bits(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); - else if (i == 0 && stat_counters[j].is_sensor == 1) // only parse sensors on first go-around per display - parse_sensors(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); - else if (i == 0 && stat_counters[j].is_sensor == 2) // only parse drm on first go-around per display - parse_drm(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); + if (!top_options.sriov.num_vf || top_options.sriov.active_vf < 0 || + top_options.sriov.active_vf == get_active_vf(asic, stat_counters[2].addr)) { + for (j = 0; stat_counters[j].name; j++) { + if (top_options.all || *stat_counters[j].opt) { + if (stat_counters[j].is_sensor == 0) + parse_bits(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); + else if (i == 0 && stat_counters[j].is_sensor == 1) // only parse sensors on first go-around per display + parse_sensors(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); + else if (i == 0 && stat_counters[j].is_sensor == 2) // only parse drm on first go-around per display + parse_drm(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); + else if (stat_counters[j].is_sensor == 3) + parse_iov(asic, stat_counters[j].addr, stat_counters[j].bits, stat_counters[j].counts, stat_counters[j].mask, stat_counters[j].cmp, stat_counters[j].addr_mask); + } } + } nanosleep(&req, NULL); ts += (req.tv_nsec / 1000000); } @@ -1058,6 +1229,25 @@ void umr_top(struct umr_asic *asic) case '2': top_options.high_frequency ^= 1; break; + case '[': + if (top_options.sriov.num_vf) { + top_options.sriov.active_vf--; + if (top_options.sriov.active_vf < 0) + top_options.sriov.active_vf = top_options.sriov.num_vf - 1; + } + break; + case ']': + if (top_options.sriov.num_vf) { + top_options.sriov.active_vf++; + if (top_options.sriov.active_vf >= top_options.sriov.num_vf) + top_options.sriov.active_vf = 0; + } + break; + case '=': + if (top_options.sriov.num_vf) { + top_options.sriov.active_vf = -1; + } + break; case 'r': top_options.drm ^= 1; break; default: top_options.handle_key(i); @@ -1108,6 +1298,8 @@ void umr_top(struct umr_asic *asic) print_sensors(stat_counters[i].bits, stat_counters[i].counts); else if (stat_counters[i].is_sensor == 2) print_drm(stat_counters[i].bits, stat_counters[i].counts); + else if (stat_counters[i].is_sensor == 3) + print_iov(stat_counters[i].counts); } } if (logfile != NULL) { @@ -1123,6 +1315,9 @@ void umr_top(struct umr_asic *asic) if (print_j & (top_options.wide ? 3 : 1)) printw("\n"); printw("\n(a)ll (w)ide (1)high_precision (2)high_frequency (W)rite (l)ogger\n(v)ram d(r)m\n%s", top_options.helptext); + if (top_options.sriov.num_vf) { + printw("([)prev VF (])next VF (=)all VF\n"); + } refresh(); } endwin(); -- 2.13.2.932.g7449e964c-goog