On 12/13/17 5:18 PM, Nicolin Chen wrote:
- /* Used when using fsl-ssi as sound-card. This is only used by ppc and
- * should be replaced with simple-sound-card. */
struct platform_device *pdev;
Is this comment no longer true?
+ * 1) SSI in earlier SoCS has crtical bits in control registers that
critical
-/**
- * fsl_ssi_isr: SSI interrupt handler
- *
- * Although it's possible to use the interrupt handler to send and receive
- * data to/from the SSI, we use the DMA instead. Programming is more
- * complicated, but the performance is much better.
- *
- * This interrupt handler is used only to gather statistics.
- *
- * @irq: IRQ of the SSI device
- * @dev_id: pointer to the fsl_ssi structure for this SSI device
- */
What's wrong with this comment?
-/*
- * Clear RX or TX FIFO to remove samples from the previous
- * stream session which may be still present in the FIFO and
- * may introduce bad samples and/or channel slipping.
- *
- * Note: The SOR is not documented in recent IMX datasheet, but
- * is described in IMX51 reference manual at section 56.3.3.15.
+/**
+ * Clear remaining data in the FIFO to avoid dirty data or channel slipping
I think the original is better, unless there's something untrue about it.
- * We are running on a SoC which does not support online SSI
- * reconfiguration, so we have to enable all necessary flags at once
- * even if we do not use them later (capture and playback configuration)
+ * Online configuration is not supported
+ * Enable or Disable all necessary bits at once
Ditto
- /*
- * Configure single direction units while the SSI unit is running
- * (online configuration)
- */
+ /* Online configure single direction while SSI is running */
Ditto
- /*
- * Disabling the necessary flags for one of rx/tx while the
- * other stream is active is a little bit more difficult. We
- * have to disable only those flags that differ between both
- * streams (rx XOR tx) and that are set in the stream that is
- * disabled now. Otherwise we could alter flags of the other
- * stream
- */
-
- /* These assignments are simply vals without bits set in avals*/
+ /* Exclude necessary bits for the opposite stream */
Ditto
- /*
- * Be sure the Tx FIFO is filled when TE is set.
- * Otherwise, there are some chances to start the
- * playback with some void samples inserted first,
- * generating a channel slip.
- *
- * First, SSIEN must be set, to let the FIFO be filled.
- *
- * Notes:
- * - Limit this fix to the DMA case until FIQ cases can
- * be tested.
- * - Limit the length of the busy loop to not lock the
- * system too long, even if 1-2 loops are sufficient
- * in general.
- */
What's wrong with this comment?
- /*
- * Note that these below aren't just normal registers.
- * They are a way to disable or enable bits in SACCST
- * register:
- * - writing a '1' bit at some position in SACCEN sets the
- * relevant bit in SACCST,
- * - writing a '1' bit at some position in SACCDIS unsets
- * the relevant bit in SACCST register.
- *
- * The two writes below first disable all channels slots,
- * then enable just slots 3 & 4 ("PCM Playback Left Channel"
- * and "PCM Playback Right Channel").
- */
+ /* Disable all channel slots */
Ditto.
- * Why are we setting up SACCST everytime we are starting a
- * playback?
- * Some CODECs (like VT1613 CODEC on UDOO board) like to
- * (sometimes) set extra bits in their SLOTREQ requests.
- * When a bit is set in a SLOTREQ request then SSI sets the
- * relevant bit in SACCST automatically (it is enough if a bit was
- * set in a SLOTREQ just once, bits in SACCST are 'sticky').
- * If an extra slot gets enabled that's a disaster for playback
- * because some of normal left or right channel samples are
- * redirected instead to this extra slot.
+ * SACCST might be modified via AC Link by a CODEC if it sends
+ * extra bits in their SLOTREQ requests, which'll accidentally
+ * send valid data to slots other than normal playback slots.
*
- * A workaround implemented in fsl-asoc-card of setting an
- * appropriate CODEC register so that slots 3 & 4 (the normal
- * stereo playback slots) are used for S/PDIF seems to mostly fix
- * this issue on the UDOO board but since this CODEC is so
- * untrustworthy let's play safe here and make sure that no extra
- * slots are enabled every time a playback is started.
+ * To be safe, configure SACCST right before TX starts.
I think the original is better, unless there's something untrue about it.
*/
if (enable && fsl_ssi_is_ac97(ssi))
fsl_ssi_tx_ac97_saccst_setup(ssi);
@@ -626,10 +563,8 @@ static void fsl_ssi_tx_config(struct fsl_ssi *ssi, bool enable)
fsl_ssi_config(ssi, enable, &ssi->rxtx_reg_val.tx);
}
-/*
- * Setup rx/tx register values used to enable/disable the streams. These will
- * be used later in fsl_ssi_config to setup the streams without the need to
- * check for all different SSI modes.
+/**
+ * Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
This is different comment altogether. Is the original wrong?
-/**
- * fsl_ssi_startup: create a new substream
- *
- * This is the first function called when a stream is opened.
- *
- * If this is the first stream open, then grab the IRQ and program most of
- * the SSI registers.
- */
What's wrong with this?
- * fsl_ssi_hw_params - program the sample size
+ * Configure SSI based on PCM hardware parameters
*
- * Most of the SSI registers have been programmed in the startup function,
- * but the word length must be programmed here. Unfortunately, programming
- * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
- * cause a problem with supporting simultaneous playback and capture. If
- * the SSI is already playing a stream, then that stream may be temporarily
- * stopped when you start capture.
- *
- * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
- * clock master.
+ * Notes:
+ * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
+ * disabled on offline_config SoCs. Even for online configurable SoCs
+ * running in synchronous mode (both TX and RX use STCCR), it is not
+ * safe to re-configure them when both two streams start running.
+ * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
+ * fsl_ssi_set_bclk() if SSI is the DAI clock master.
I think the comment about the stream being temporarily stopped should be
kept, since it was a real issue I spent a lot of time trying to debug.
Unless it's been fixed, of course.
*/
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
@@ -879,8 +795,10 @@ static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
enabled = scr_val & CCSR_SSI_SCR_SSIEN;
/*
- * If we're in synchronous mode, and the SSI is already enabled,
- * then STCCR is already set properly.
+ * SSI is properly configured if it is enabled and running in
+ * the synchronous mode; Note that AC97 mode is an exception
+ * that should set separate configurations for STCCR and SRCCR
+ * despite running in the synchronous mode.
*/
if (enabled && ssi->cpu_dai_drv.symmetric_rates)
return 0;
@@ -902,10 +820,7 @@ static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
if (!fsl_ssi_is_ac97(ssi)) {
u8 i2smode;
- /*
- * Switch to normal net mode in order to have a frame sync
- * signal every 32 bits instead of 16 bits
- */
+ /* Normal + Network mode to send 16-bit data in 32-bit frames */
if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
CCSR_SSI_SCR_NET;
@@ -917,16 +832,6 @@ static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
channels == 1 ? 0 : i2smode);
}
- /*
- * FIXME: The documentation says that SxCCR[WL] should not be
- * modified while the SSI is enabled. The only time this can
- * happen is if we're trying to do simultaneous playback and
- * capture in asynchronous mode. Unfortunately, I have been enable
- * to get that to work at all on the P1022DS. Therefore, we don't
- * bother to disable/enable the SSI when setting SxCCR[WL], because
- * the SSI will stop anyway. Maybe one day, this will get fixed.
- */
Has this been fixed? If not, then don't delete the comment.
/**
- * fsl_ssi_trigger: start and stop the DMA transfer.
- *
- * This function is called by ALSA to start, stop, pause, and resume the DMA
- * transfer of data.
- *
- * The DMA channel is in external master start and pause mode, which
- * means the SSI completely controls the flow of data.
This last paragraph is important.
-
- /*
- * Some boards use an incompatible codec. To get it
- * working, we are using imx-fiq-pcm-audio, that
- * can handle those codecs. DMA is not possible in this
- * situation.
- */
-
+ /* Use imx-fiq-pcm-audio for codec incompatible with DMA */
Original is clearer.
- * Set the watermark for transmit FIFO 0 and receive FIFO 0. We don't
- * use FIFO 1 but set the watermark appropriately nontheless.
- * We program the transmit water to signal a DMA transfer
- * if there are N elements left in the FIFO. For chips with 15-deep
- * FIFOs, set watermark to 8. This allows the SSI to operate at a
- * high data rate without channel slipping. Behavior is unchanged
- * for the older chips with a fifo depth of only 8. A value of 4
- * might be appropriate for the older chips, but is left at
- * fifo_depth-2 until sombody has a chance to test.
+ * Configure TX and RX DMA watermarks.
*
- * We set the watermark on the same level as the DMA burstsize. For
- * fiq it is probably better to use the biggest possible watermark
- * size.
+ * Values should be tested to avoid FIFO under/over run. Set maxburst
+ * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
Why in the world would you delete all this good info?
*/
switch (ssi->fifo_depth) {
case 15:
- /*
- * 2 samples is not enough when running at high data
- * rates (like 48kHz @ 16 bits/channel, 16 channels)
- * 8 seems to split things evenly and leave enough time
- * for the DMA to fill the FIFO before it's over/under
- * run.
- */
+ /* Tested with cases running at 48kHz @ 16 bits x 16 channels */
Same here.
- /*
- * If codec-handle property is missing from SSI node, we assume
- * that the machine driver uses new binding which does not require
- * SSI driver to trigger machine driver's probe.
- */
+ /* Bypass it if using newer DT bindings of ASoC machine drivers */
Not an improvement.
-/* Show the statistics of a flag only if its interrupt is enabled. The
- * compiler will optimze this code to a no-op if the interrupt is not
- * enabled.
+/**
+ * Show the statistics of a flag only if its interrupt is enabled
+ *
+ * Compilers will optimze it to a no-op if the interrupt is disabled
optimize
_______________________________________________
Alsa-devel mailing list
Alsa-devel@xxxxxxxxxxxxxxxx
http://mailman.alsa-project.org/mailman/listinfo/alsa-devel