On 8/31/08, Jean Delvare <khali@xxxxxxxxxxxx> wrote: > Hi Timur, > > I am in the process of converting your cs4270 codec driver from the > legacy i2c model to the new (standard) one. This is work in progress. > The patch below converts the cs4270 driver itself. However we also need > to convert its users. As far as I can see there's only one user at this > point: mpc8610_hpcd. > > The problem is that this driver doesn't look like the other codec > drivers I have already converted. So, we need to add code to > instantiate the cs4270 i2c device, but I don't know where this should > happen. Given that the mpc8610_hpcd is apparently based on Open > Firmware, I guess that the i2c device should be instantiated directly > by the platform code. I see that the device is declared in > mpc8610_hpcd.dts, so maybe it's already done and my patch should work > already? What do you think? I attached my codec and i2s driver. The i2c device is getting created as part of the device tree loading process. -- Jon Smirl jonsmirl@xxxxxxxxx
/* * Texas Instruments TAS5504 low power audio CODEC * ALSA SoC CODEC driver * * Copyright (C) Jon Smirl <jonsmirl@xxxxxxxxx> */ #define DEBUG #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/device.h> #include <linux/sysfs.h> #include <linux/i2c.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/soc-of-simple.h> #include <sound/initval.h> #include "tas5504.h" #define TAS_MAX_8B_REG 0x40 #define TAS_REG_MAX 0xe1 #define TAS5504_RATES (SNDRV_PCM_RATE_32000 |\ SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |\ SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |\ SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000) #define TAS5504_FORMATS SNDRV_PCM_FMTBIT_S32 /* Size and number of variable length entries in the cache */ #define TAS_CACHE_1_MAX 41 #define TAS_CACHE_2_MAX 16 #define TAS_CACHE_3_MAX 2 #define TAS_CACHE_4_MAX 8 #define TAS_CACHE_5_MAX 30 #define TAS_CACHE_6_MAX 4 /* Size and offset of specific entries in the cache */ static struct { u8 size; u8 offset; } cache_map[] = { [0x00]= {1, 0xff}, /* TAS_REG_CLOCK_CONTROL */ [0x01]= {1, 0xff}, /* TAS_REG_GENERAL_STATUS */ [0x02]= {1, 0xff}, /* TAS_REG_ERROR_STATUS */ [0x03]= {1, 0}, /* TAS_REG_SYS_CONTROL_1 */ [0x04]= {1, 1}, /* TAS_REG_SYS_CONTROL_2 */ [0x05]= {1, 2}, /* TAS_REG_CH_CONFIG_1 */ [0x06]= {1, 3}, /* TAS_REG_CH_CONFIG_2 */ [0x0b]= {1, 4}, /* TAS_REG_CH_CONFIG_3 */ [0x0c]= {1, 5}, /* TAS_REG_CH_CONFIG_4 */ [0x0d]= {1, 6}, /* TAS_REG_HP_CONFIG */ [0x0e]= {1, 0xff}, /* TAS_REG_SERIAL_CONTROL */ [0x0f]= {1, 7}, /* TAS_REG_SOFT_MUTE */ [0x14]= {1, 8}, /* TAS_REG_AUTO_MUTE */ [0x15]= {1, 9}, /* TAS_REG_AUTO_MUTE_PWM */ [0x16]= {1, 10}, /* TAS_REG_MODULATE_LIMIT */ [0x1b]= {1, 11}, /* TAS_REG_IC_DELAY_1 */ [0x1c]= {1, 12}, /* TAS_REG_IC_DELAY_2 */ [0x21]= {1, 13}, /* TAS_REG_IC_DELAY_3 */ [0x22]= {1, 14}, /* TAS_REG_IC_DELAY_4 */ [0x23]= {1, 15}, /* TAS_REG_IC_OFFSET */ [0x40]= {1, 16}, /* TAS_REG_BANK_SWITCH */ [0x41]= {8, 1,}, /* TAS_REG_IN8X4_1 */ [0x42]= {8, 2,}, /* TAS_REG_IN8X4_2 */ [0x47]= {8, 3,}, /* TAS_REG_IN8X4_3 */ [0x48]= {8, TAS_CACHE_2_MAX,}, /* TAS_REG_IN8X4_4 */ [0x49]= {1, 17}, /* TAS_REG_IPMIX_1_TO_CH4 */ [0x4a]= {1, 18}, /* TAS_REG_IPMIX_2_TO_CH4 */ [0x4b]= {1, 19}, /* TAS_REG_IPMIX_3_TO_CH2 */ [0x4c]= {1, 20}, /* TAS_REG_CH3_BP_BQ2 */ [0x4d]= {1, 21}, /* TAS_REG_CH3_BP */ [0x4e]= {1, 22}, /* TAS_REG_IPMIX_4_TO_CH12 */ [0x4f]= {1, 23}, /* TAS_REG_CH4_BP_BQ2 */ [0x50]= {1, 24}, /* TAS_REG_CH4_BP */ [0x51]= {5, 1,}, /* TAS_REG_CH1_BQ_1 */ [0x52]= {5, 2,}, /* TAS_REG_CH1_BQ_2 */ [0x53]= {5, 3,}, /* TAS_REG_CH1_BQ_3 */ [0x54]= {5, 4,}, /* TAS_REG_CH1_BQ_4 */ [0x55]= {5, 5,}, /* TAS_REG_CH1_BQ_5 */ [0x56]= {5, 6,}, /* TAS_REG_CH1_BQ_6 */ [0x57]= {5, 7,}, /* TAS_REG_CH1_BQ_7 */ [0x58]= {5, 8,}, /* TAS_REG_CH2_BQ_1 */ [0x59]= {5, 9,}, /* TAS_REG_CH2_BQ_2 */ [0x5a]= {5, 10,}, /* TAS_REG_CH2_BQ_3 */ [0x5b]= {5, 11,}, /* TAS_REG_CH2_BQ_4 */ [0x5c]= {5, 12,}, /* TAS_REG_CH2_BQ_5 */ [0x5d]= {5, 13,}, /* TAS_REG_CH2_BQ_6 */ [0x5e]= {5, 14,}, /* TAS_REG_CH2_BQ_7 */ [0x7b]= {5, 15,}, /* TAS_REG_CH3_BQ_1 */ [0x7c]= {5, 16,}, /* TAS_REG_CH3_BQ_2 */ [0x7d]= {5, 17,}, /* TAS_REG_CH3_BQ_3 */ [0x7e]= {5, 18,}, /* TAS_REG_CH3_BQ_4 */ [0x7f]= {5, 19,}, /* TAS_REG_CH3_BQ_5 */ [0x80]= {5, 20,}, /* TAS_REG_CH3_BQ_6 */ [0x81]= {5, 21,}, /* TAS_REG_CH3_BQ_7 */ [0x82]= {5, 22,}, /* TAS_REG_CH4_BQ_1 */ [0x83]= {5, 23,}, /* TAS_REG_CH4_BQ_2 */ [0x84]= {5, 24,}, /* TAS_REG_CH4_BQ_3 */ [0x85]= {5, 25,}, /* TAS_REG_CH4_BQ_4 */ [0x86]= {5, 26,}, /* TAS_REG_CH4_BQ_5 */ [0x87]= {5, 27,}, /* TAS_REG_CH4_BQ_6 */ [0x88]= {5, 28,}, /* TAS_REG_CH4_BQ_7 */ [0x89]= {2, 1,}, /* TAS_REG_BT_BYPASS_CH1 */ [0x8a]= {2, 2,}, /* TAS_REG_BT_BYPASS_CH2 */ [0x8f]= {2, 3,}, /* TAS_REG_BT_BYPASS_CH3 */ [0x90]= {2, 4,}, /* TAS_REG_BT_BYPASS_CH4 */ [0x91]= {1, 25,}, /* TAS_REG_LOUDNESS_LG */ [0x92]= {2, 5,}, /* TAS_REG_LOUDNESS_LO */ [0x93]= {1, 26,}, /* TAS_REG_LOUDNESS_G */ [0x94]= {2, 6,}, /* TAS_REG_LOUDNESS_O */ [0x95]= {5, 29,}, /* TAS_REG_LOUDNESS_BQ */ [0x96]= {1, 27,}, /* TAS_REG_DRC1_CNTL_123 */ [0x97]= {1, 28,}, /* TAS_REG_DRC2_CNTL_4 */ [0x98]= {2, 7,}, /* TAS_REG_DRC1_ENERGY */ [0x99]= {4, 3,}, /* TAS_REG_DRC1_THRESHOLD */ [0x9a]= {3, 1,}, /* TAS_REG_DRC1_SLOPE */ [0x9b]= {4, 4,}, /* TAS_REG_DRC1_OFFSET */ [0x9c]= {4, 5,}, /* TAS_REG_DRC1_ATTACK */ [0x9d]= {2, 8,}, /* TAS_REG_DRC2_ENERGY */ [0x9e]= {4, 6,}, /* TAS_REG_DRC2_THRESHOLD */ [0x9f]= {2, TAS_CACHE_3_MAX,}, /* TAS_REG_DRC2_SLOPE */ [0xa0]= {4, 7,}, /* TAS_REG_DRC2_OFFSET */ [0xa1]= {4, TAS_CACHE_2_MAX,}, /* TAS_REG_DRC2_ATTACK */ [0xa2]= {2, 9,}, /* TAS_REG_DRC_BYPASS_1 */ [0xa3]= {2, 10,}, /* TAS_REG_DRC_BYPASS_2 */ [0xa8]= {2, 11,}, /* TAS_REG_DRC_BYPASS_3 */ [0xa9]= {2, 12,}, /* TAS_REG_DRC_BYPASS_4 */ [0xaa]= {2, 13,}, /* TAS_REG_SEL_OP14_S */ [0xab]= {2, 14,}, /* TAS_REG_SEL_OP14_T */ [0xb0]= {2, 15,}, /* TAS_REG_SEL_OP14_Y */ [0xb1]= {2, TAS_CACHE_2_MAX,}, /* TAS_REG_SEL_OP14_Z */ [0xcf]= {5, TAS_CACHE_5_MAX,}, /* TAS_REG_VOLUME_BQ */ [0xd0]= {1, 29}, /* TAS_REG_VOL_TB_SLEW */ [0xd1]= {1, 30}, /* TAS_REG_VOL_CH1 */ [0xd2]= {1, 31}, /* TAS_REG_VOL_CH2 */ [0xd7]= {1, 32}, /* TAS_REG_VOL_CH3 */ [0xd8]= {1, 33}, /* TAS_REG_VOL_CH4 */ [0xd9]= {1, 34}, /* TAS_REG_VOL_MASTER */ [0xda]= {1, 35}, /* TAS_REG_BASS_SET */ [0xdb]= {1, 36}, /* TAS_REG_BASS_INDEX */ [0xdc]= {1, 37}, /* TAS_REG_TREBLE_SET */ [0xdd]= {1, 38}, /* TAS_REG_TREBLE_INDEX */ [0xde]= {1, 39}, /* TAS_REG_AM_MODE */ [0xdf]= {1, 40}, /* TAS_REG_PSVC */ [0xe0]= {1, TAS_CACHE_1_MAX,}, /* TAS_REG_GENERAL_CONTROL */ }; /* location of each variable length segment in the cache array */ #define TAS_CACHE_1_BASE 0 #define TAS_CACHE_2_BASE TAS_CACHE_1_BASE + (TAS_CACHE_1_MAX + 1) #define TAS_CACHE_3_BASE TAS_CACHE_2_BASE + (TAS_CACHE_2_MAX + 1) * 2 #define TAS_CACHE_4_BASE TAS_CACHE_3_BASE + (TAS_CACHE_3_MAX + 1) * 3 #define TAS_CACHE_5_BASE TAS_CACHE_4_BASE + (TAS_CACHE_4_MAX + 1) * 4 #define TAS_CACHE_8_BASE TAS_CACHE_5_BASE + (TAS_CACHE_5_MAX + 1) * 5 #define TAS_CACHE_MAX TAS_CACHE_8_BASE + (TAS_CACHE_5_MAX + 1) * 8 /* tas5504 driver private data */ struct tas5504_priv { struct i2c_client *client; struct snd_soc_codec codec; /* performance shadow of i2c registers */ u32 reg_cache[TAS_CACHE_MAX]; u8 valid[TAS_CACHE_MAX]; }; /* --------------------------------------------------------------------- * Register access routines */ static u32 *tas5504_get_base(struct tas5504_priv *priv, unsigned int reg) { u32 *base; switch (cache_map[reg].size) { case 1: base = &priv->reg_cache[TAS_CACHE_1_BASE]; break; case 2: base = &priv->reg_cache[TAS_CACHE_2_BASE]; break; case 3: base = &priv->reg_cache[TAS_CACHE_3_BASE]; break; case 4: base = &priv->reg_cache[TAS_CACHE_4_BASE]; break; case 5: base = &priv->reg_cache[TAS_CACHE_5_BASE]; break; case 8: base = &priv->reg_cache[TAS_CACHE_8_BASE]; break; default: return 0; } base += cache_map[reg].offset * cache_map[reg].size; return base; } static void tas5504_update_cache(struct tas5504_priv *priv, u8 reg, u32 *value, unsigned int count) { if (cache_map[reg].offset != 0xFF) /* not volatile, cache it */ priv->valid[reg] = 1; memmove(tas5504_get_base(priv, reg), value, cache_map[reg].size * sizeof *value * count); } static void tas5504_reg_read(struct snd_soc_codec *codec, u8 reg) { struct tas5504_priv *priv = codec->private_data; u8 value[32]; int rc; struct i2c_msg msgs[2] = { {.addr = priv->client->addr, .flags = 0, .len = 1, .buf = ®}, {.addr = priv->client->addr, .flags = I2C_M_RD, .buf = &value[0]} }; if (reg < TAS_MAX_8B_REG) /* special case 8 bit regs */ msgs[1].len = 1; else msgs[1].len = cache_map[reg].size * 4; rc = i2c_transfer(priv->client->adapter, msgs, ARRAY_SIZE(msgs)); if (rc != 2) { dev_err(&priv->client->dev, "%s: rc=%d reg=%02x rc != size\n", __func__, rc, reg); return; } if (reg < TAS_MAX_8B_REG) /* convert 8b result to 32b */ *(u32 *)&value[0] = value[0]; tas5504_update_cache(priv, reg, (u32*)&value[0], cache_map[reg].size); } static unsigned int tas5504_reg_read_cache(struct snd_soc_codec *codec, unsigned int reg) { struct tas5504_priv *priv = codec->private_data; if (reg > TAS_REG_MAX) return -1; /* can only read 32 bit registers, 0xFF is volatile 32b */ if (!((cache_map[reg].size == 1) || (cache_map[reg].size == 0xFF))) return -1; if (!priv->valid[reg]) tas5504_reg_read(codec, reg); return *tas5504_get_base(priv, reg); } static int tas5504_reg_write_long(struct snd_soc_codec *codec, unsigned int reg, u32 *value, unsigned int count) { struct tas5504_priv *priv = codec->private_data; u8 buf[33]; int rc, size; memmove(tas5504_get_base(priv, reg), value, count * sizeof *value); buf[0] = reg; size = 1; if (reg < TAS_MAX_8B_REG) { buf[1] = *value; size += 1; } else { size += count * sizeof *value; memmove(&buf[1], value, size); } rc = i2c_master_send(priv->client, buf, size); if (rc != size) { dev_err(&priv->client->dev, "%s: rc=%d reg=%02x size %02x rc != size\n", __func__, rc, reg, size); return -EIO; } return 0; } static int tas5504_reg_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { if (reg > TAS_REG_MAX) return -EINVAL; /* can only read 32 bit registers, 0xFF is a volatile 32b */ if (!((cache_map[reg].size == 1) || (cache_map[reg].size == 0xFF))) return -EINVAL; return tas5504_reg_write_long(codec, reg, &value, 1); } /* --------------------------------------------------------------------- * Digital Audio Interface Operations */ static int tas5504_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_device *socdev = rtd->socdev; struct snd_soc_codec *codec = socdev->codec; struct tas5504_priv *priv = codec->private_data; dev_dbg(&priv->client->dev, "tas5504_hw_params(substream=%p, params=%p)\n", substream, params); dev_dbg(&priv->client->dev, "rate=%i format=%i\n", params_rate(params), params_format(params)); return 0; } /** * tas5504_mute - Mute control to reduce noise when changing audio format */ static int tas5504_mute(struct snd_soc_dai *dai, int mute) { struct snd_soc_codec *codec = dai->codec; struct tas5504_priv *priv = codec->private_data; dev_dbg(&priv->client->dev, "tas5504_mute(dai=%p, mute=%i)\n", dai, mute); return 0; } /* --------------------------------------------------------------------- * Digital Audio Interface Definition */ struct snd_soc_dai tas5504_dai = { .name = "tas5504", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = TAS5504_RATES, .formats = TAS5504_FORMATS, }, .ops = { .hw_params = tas5504_hw_params, }, .dai_ops = { .digital_mute = tas5504_mute, }, }; EXPORT_SYMBOL_GPL(tas5504_dai); /* --------------------------------------------------------------------- * ALSA controls */ static int tas5504_info_ctl_1(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_1_64(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER64; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_2(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_2_64(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER64; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_3(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 3; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_4(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 4; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_5(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 5; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_info_ctl_8(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 8; uinfo->value.integer.min = 0; uinfo->value.integer.max = -1; uinfo->value.integer.step = 1; return 0; } static int tas5504_get_reg(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas5504_priv *priv = snd_kcontrol_chip(kcontrol); struct snd_ctl_elem_info uinfo; int reg, count; reg = kcontrol->private_value; kcontrol->info(kcontrol, &uinfo); count = (uinfo.type == SNDRV_CTL_ELEM_TYPE_INTEGER64 ? 2 : 1); count *= uinfo.count; if (!priv->valid[reg]) tas5504_reg_read(&priv->codec, reg); memmove(tas5504_get_base(priv, reg), &ucontrol->value.integer.value[0], count); return 0; } static int tas5504_put_reg(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct tas5504_priv *priv = snd_kcontrol_chip(kcontrol); struct snd_ctl_elem_info uinfo; int reg, count; reg = kcontrol->private_value; kcontrol->info(kcontrol, &uinfo); count = (uinfo.type == SNDRV_CTL_ELEM_TYPE_INTEGER64 ? 2 : 1); count *= uinfo.count; return tas5504_reg_write_long(&priv->codec, reg, (u32 *)&ucontrol->value.integer.value[0], count); } #define TAS_CTL_1(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_1, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_1R(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READ, \ .info = tas5504_info_ctl_1, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_1_64(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_1_64, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_2(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_2, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_2_64(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_2_64, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_3(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_3, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_4(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_4, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_5(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_5, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } #define TAS_CTL_8(xregister, xsubdevice, xindex, xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ .name = xname, \ .index = xindex, \ .device = 0, \ .subdevice = xsubdevice, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = tas5504_info_ctl_8, \ .get = tas5504_get_reg, \ .put = tas5504_put_reg, \ .private_value = xregister \ } static const struct snd_kcontrol_new tas5504_snd_controls[] = { TAS_CTL_1R(0x00, 0, 0, "Clock Control"), TAS_CTL_1R(0x01, 0, 0, "General Status"), TAS_CTL_1(0x02, 0, 0, "Error Status"), TAS_CTL_1(0x03, 0, 0, "System Control 1"), TAS_CTL_1(0x04, 0, 0, "System Control 2"), TAS_CTL_1(0x05, 1, 0, "General Config"), TAS_CTL_1(0x06, 2, 0, "General Config"), TAS_CTL_1(0x0b, 3, 0, "General Config"), TAS_CTL_1(0x0c, 4, 0, "General Config"), TAS_CTL_1(0x0d, 0, 0, "Headphone Config"), TAS_CTL_1R(0x0e, 0, 0, "Serial Data Interface"), TAS_CTL_1(0x0f, 0, 0, "Soft Mute"), TAS_CTL_1(0x14, 0, 0, "Auto Mute"), TAS_CTL_1(0x15, 0, 0, "Auto Mute PWM"), TAS_CTL_1R(0x16, 0, 0, "Modulation"), TAS_CTL_1(0x1b, 1, 0, "Interchannel Delay"), TAS_CTL_1(0x1c, 2, 0, "Interchannel Delay"), TAS_CTL_1(0x21, 3, 0, "Interchannel Delay"), TAS_CTL_1(0x22, 4, 0, "Interchannel Delay"), TAS_CTL_1(0x23, 0, 0, "Interchannel Offset"), TAS_CTL_1(0x40, 4, 0, "Bank Switching"), TAS_CTL_8(0x41, 1, 0, "Input Mixer"), TAS_CTL_8(0x42, 2, 0, "Input Mixer"), TAS_CTL_8(0x47, 3, 0, "Input Mixer"), TAS_CTL_8(0x48, 4, 0, "Input Mixer"), TAS_CTL_1(0x49, 0, 0, "Bass ipmix_1_to_ch4"), TAS_CTL_1(0x4a, 0, 0, "Bass ipmix_2_to_ch4"), TAS_CTL_1(0x4b, 0, 0, "Bass ipmix_3_to_ch12"), TAS_CTL_1(0x4c, 0, 0, "Bass ch3_bp_bq2"), TAS_CTL_1(0x4d, 0, 0, "Bass ch3_bq2"), TAS_CTL_1(0x4e, 0, 0, "Bass ipmix_4_to_ch12"), TAS_CTL_1(0x4f, 0, 0, "Bass ch4_bp_bq2"), TAS_CTL_1(0x50, 0, 0, "Bass ch4_bq2"), TAS_CTL_5(0x51, 1, 1, "Biquad"), TAS_CTL_5(0x52, 1, 2, "Biquad"), TAS_CTL_5(0x53, 1, 3, "Biquad"), TAS_CTL_5(0x54, 1, 4, "Biquad"), TAS_CTL_5(0x55, 1, 5, "Biquad"), TAS_CTL_5(0x56, 1, 6, "Biquad"), TAS_CTL_5(0x57, 1, 7, "Biquad"), TAS_CTL_5(0x58, 2, 1, "Biquad"), TAS_CTL_5(0x59, 2, 2, "Biquad"), TAS_CTL_5(0x5a, 2, 3, "Biquad"), TAS_CTL_5(0x5b, 2, 4, "Biquad"), TAS_CTL_5(0x5c, 2, 5, "Biquad"), TAS_CTL_5(0x5d, 2, 6, "Biquad"), TAS_CTL_5(0x5e, 2, 7, "Biquad"), TAS_CTL_5(0x7b, 3, 1, "Biquad"), TAS_CTL_5(0x7c, 3, 2, "Biquad"), TAS_CTL_5(0x7d, 3, 3, "Biquad"), TAS_CTL_5(0x7e, 3, 4, "Biquad"), TAS_CTL_5(0x7f, 3, 5, "Biquad"), TAS_CTL_5(0x80, 3, 6, "Biquad"), TAS_CTL_5(0x81, 3, 7, "Biquad"), TAS_CTL_5(0x82, 4, 1, "Biquad"), TAS_CTL_5(0x83, 4, 2, "Biquad"), TAS_CTL_5(0x84, 4, 3, "Biquad"), TAS_CTL_5(0x85, 4, 4, "Biquad"), TAS_CTL_5(0x86, 4, 5, "Biquad"), TAS_CTL_5(0x87, 4, 6, "Biquad"), TAS_CTL_5(0x88, 4, 7, "Biquad"), TAS_CTL_2(0x89, 1, 0, "Bass/Treble Bypass"), TAS_CTL_2(0x8a, 2, 0, "Bass/Treble Bypass"), TAS_CTL_2(0x8f, 3, 0, "Bass/Treble Bypass"), TAS_CTL_2(0x90, 4, 0, "Bass/Treble Bypass"), TAS_CTL_1(0x91, 0, 0, "Loudness Log2 Gain"), TAS_CTL_1_64(0x92, 0, 0, "Loudness Log2 Offset"), TAS_CTL_1(0x93, 0, 0, "Loudness Gain"), TAS_CTL_1_64(0x94, 0, 0, "Loudness Offset"), TAS_CTL_5(0x95, 0, 0, "Loudness Biquad"), TAS_CTL_1(0x96, 0, 0, "DRC Control 1-3"), TAS_CTL_1(0x97, 0, 0, "DRC Control 4"), TAS_CTL_2(0x97, 0, 0, "DRC Energy"), TAS_CTL_2_64(0x97, 0, 0, "DRC Threshold"), TAS_CTL_3(0x97, 0, 0, "DRC Slope"), TAS_CTL_2_64(0x97, 0, 0, "DRC Offset"), TAS_CTL_4(0x97, 0, 0, "DRC Attack/Delay"), TAS_CTL_2(0x9d, 4, 0, "DRC Energy"), TAS_CTL_2_64(0x9e, 4, 0, "DRC Threshold"), TAS_CTL_3(0x9f, 4, 0, "DRC Slope"), TAS_CTL_2_64(0xa0, 4, 0, "DRC Offset"), TAS_CTL_4(0xa1, 4, 0, "DRC Attack/Delay"), TAS_CTL_2(0xa2, 1, 0, "DRC Bypass"), TAS_CTL_2(0xa3, 2, 0, "DRC Bypass"), TAS_CTL_2(0xa8, 3, 0, "DRC Bypass"), TAS_CTL_2(0xa9, 4, 0, "DRC Bypass"), TAS_CTL_2(0xaa, 1, 0, "Output Mixer"), TAS_CTL_2(0xab, 2, 0, "Output Mixer"), TAS_CTL_3(0xb0, 3, 0, "Output Mixer"), TAS_CTL_3(0xb1, 4, 0, "Output Mixer"), TAS_CTL_5(0xcf, 0, 0, "Volume Biquad"), TAS_CTL_1(0xd0, 0, 0, "Volume Slew"), TAS_CTL_1(0xd1, 1, 0, "Volume"), TAS_CTL_1(0xd2, 2, 0, "Volume"), TAS_CTL_1(0xd7, 3, 0, "Volume"), TAS_CTL_1(0xd8, 4, 0, "Volume"), SOC_SINGLE("PCM Playback Volume", 0xd9, 0, 0x3ff, 1), TAS_CTL_1(0xda, 0, 0, "Bass Filter Set"), TAS_CTL_1(0xdb, 0, 0, "Bass Filter Index"), TAS_CTL_1(0xdc, 0, 0, "Treble Filter Set"), TAS_CTL_1(0xdd, 0, 0, "Treble Filter Index"), TAS_CTL_1(0xde, 0, 0, "AM Mode"), TAS_CTL_1(0xdf, 0, 0, "PSCV Range"), TAS_CTL_1(0xe0, 0, 0, "General Control"), }; /* --------------------------------------------------------------------- * SoC CODEC portion of driver: probe and release routines */ static int tas5504_probe(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec; struct snd_kcontrol *kcontrol; struct tas5504_priv *priv; int i, ret, err; dev_info(&pdev->dev, "Probing tas5504 SoC CODEC driver\n"); dev_dbg(&pdev->dev, "socdev=%p\n", socdev); dev_dbg(&pdev->dev, "codec_data=%p\n", socdev->codec_data); /* Fetch the relevant tas5504 private data here (it's already been * stored in the .codec pointer) */ priv = socdev->codec_data; if (priv == NULL) { dev_err(&pdev->dev, "tas5504: missing codec pointer\n"); return -ENODEV; } codec = &priv->codec; socdev->codec = codec; dev_dbg(&pdev->dev, "Registering PCMs, dev=%p, socdev->dev=%p\n", &pdev->dev, socdev->dev); /* register pcms */ ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1); if (ret < 0) { dev_err(&pdev->dev, "tas5504: failed to create pcms\n"); return -ENODEV; } /* register controls */ dev_dbg(&pdev->dev, "Registering controls\n"); for (i = 0; i < ARRAY_SIZE(tas5504_snd_controls); i++) { kcontrol = snd_ctl_new1(&tas5504_snd_controls[i], codec); err = snd_ctl_add(codec->card, kcontrol); if (err < 0) dev_err(&pdev->dev, "tas5504: failed to create control %x\n", err); } /* CODEC is setup, we can register the card now */ dev_dbg(&pdev->dev, "Registering card\n"); ret = snd_soc_register_card(socdev); if (ret < 0) { dev_err(&pdev->dev, "tas5504: failed to register card\n"); goto card_err; } return 0; card_err: snd_soc_free_pcms(socdev); return ret; } static int tas5504_remove(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); snd_soc_free_pcms(socdev); return 0; } static struct snd_soc_codec_device tas5504_soc_codec_dev = { .probe = tas5504_probe, .remove = tas5504_remove, }; int tas5504_display_register(struct snd_soc_codec *codec, char *buffer, unsigned int limit, unsigned int reg) { struct tas5504_priv *priv = codec->private_data; int i, count; u32* base; reg &= 0xFF; if (reg >= TAS_REG_MAX) return 0; if (cache_map[reg].size == 0) /* sparse reg does not exist */ return 0; if (!priv->valid[reg]) /* ensure it is valid */ tas5504_reg_read(codec, reg); base = tas5504_get_base(priv, reg); count = snprintf(buffer, limit, "%2x: ", reg); if (reg < TAS_MAX_8B_REG) count += snprintf(buffer + count, limit - count, " %.2x", *base); else for (i = 0; i < cache_map[reg].size; i++, base++) count += snprintf(buffer + count, limit - count, " %.8x", *base); count += snprintf(buffer + count, limit - count, "\n"); return count; } /* --------------------------------------------------------------------- * i2c device portion of driver: probe and release routines and i2c * driver registration. */ static int tas5504_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct tas5504_priv *priv; dev_dbg(&client->dev, "probing tas5504 i2c device\n"); /* Allocate driver data */ priv = kzalloc(sizeof *priv, GFP_KERNEL); if (!priv) return -ENOMEM; /* Initialize the driver data */ priv->client = client; i2c_set_clientdata(client, priv); /* Setup what we can in the codec structure so that the register * access functions will work as expected. More will be filled * out when it is probed by the SoC CODEC part of this driver */ priv->codec.private_data = priv; priv->codec.name = "tas5504"; priv->codec.owner = THIS_MODULE; priv->codec.dai = &tas5504_dai; priv->codec.num_dai = 1; priv->codec.read = tas5504_reg_read_cache; priv->codec.write = tas5504_reg_write; priv->codec.reg_cache_size = TAS_REG_MAX; priv->codec.display_register = tas5504_display_register; mutex_init(&priv->codec.mutex); INIT_LIST_HEAD(&priv->codec.dapm_widgets); INIT_LIST_HEAD(&priv->codec.dapm_paths); /* Tell the of_soc helper about this codec */ of_snd_soc_register_codec(&tas5504_soc_codec_dev, priv, &tas5504_dai, client->dev.archdata.of_node); dev_dbg(&client->dev, "I2C device initialized\n"); return 0; } static int tas5504_i2c_remove(struct i2c_client *client) { struct tas5504_priv *priv = dev_get_drvdata(&client->dev); kfree(priv); return 0; } static const struct i2c_device_id tas5504_device_id[] = { { "tas5504", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tas5504_id); static struct i2c_driver tas5504_driver = { .driver = { .name = "tas5504", .owner = THIS_MODULE, }, .probe = tas5504_i2c_probe, .remove = __devexit_p(tas5504_i2c_remove), .id_table = tas5504_device_id, }; static __init int tas5504_driver_init(void) { return i2c_add_driver(&tas5504_driver); } static __exit void tas5504_driver_exit(void) { i2c_del_driver(&tas5504_driver); } module_init(tas5504_driver_init); module_exit(tas5504_driver_exit); MODULE_AUTHOR("Jon Smirl"); MODULE_DESCRIPTION("TAS5504 codec module"); MODULE_LICENSE("GPL");
/* * Freescale MPC5200 PSC in I2S mode * ALSA SoC Digital Audio Interface (DAI) driver * * Copyright (C) 2008 Secret Lab Technologies Ltd. */ #include <linux/init.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/dma-mapping.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/initval.h> #include <sound/soc.h> #include <sound/soc-of-simple.h> #include <sysdev/bestcomm/bestcomm.h> #include <sysdev/bestcomm/gen_bd.h> #include <asm/time.h> #include <asm/mpc52xx.h> #include <asm/mpc52xx_psc.h> #include "mpc5200_psc_i2s.h" MODULE_AUTHOR("Grant Likely <grant.likely@xxxxxxxxxxxx>"); MODULE_DESCRIPTION("Freescale MPC5200 PSC in I2S mode ASoC Driver"); MODULE_LICENSE("GPL"); /** * PSC_I2S_RATES: sample rates supported by the I2S * * This driver currently only supports the PSC running in I2S slave mode, * which means the codec determines the sample rate. Therefore, we tell * ALSA that we support all rates and let the codec driver decide what rates * are really supported. */ #define PSC_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ SNDRV_PCM_RATE_CONTINUOUS) /** * PSC_I2S_FORMATS: audio formats supported by the PSC I2S mode */ #define PSC_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \ SNDRV_PCM_FMTBIT_S24_BE | SNDRV_PCM_FMTBIT_S24_BE | \ SNDRV_PCM_FMTBIT_S32_BE) /** * psc_i2s_stream - Data specific to a single stream (playback or capture) * @active: flag indicating if the stream is active * @psc_i2s: pointer back to parent psc_i2s data structure * @bcom_task: bestcomm task structure * @irq: irq number for bestcomm task * @period_start: physical address of start of DMA region * @period_end: physical address of end of DMA region * @period_next_pt: physical address of next DMA buffer to enqueue * @period_bytes: size of DMA period in bytes */ struct psc_i2s_stream { int active; struct psc_i2s *psc_i2s; struct bcom_task *bcom_task; int irq; struct snd_pcm_substream *stream; dma_addr_t period_start; dma_addr_t period_end; dma_addr_t period_next_pt; dma_addr_t period_current_pt; int period_bytes; }; /** * psc_i2s - Private driver data * @name: short name for this device ("PSC0", "PSC1", etc) * @psc_regs: pointer to the PSC's registers * @fifo_regs: pointer to the PSC's FIFO registers * @irq: IRQ of this PSC * @dev: struct device pointer * @dai: the CPU DAI for this device * @sicr: Base value used in serial interface control register; mode is ORed * with this value. * @playback: Playback stream context data * @capture: Capture stream context data */ struct psc_i2s { char name[32]; struct mpc52xx_psc __iomem *psc_regs; struct mpc52xx_psc_fifo __iomem *fifo_regs; unsigned int irq; struct device *dev; struct snd_soc_dai dai; spinlock_t lock; u32 sicr; uint sysclk; /* per-stream data */ struct psc_i2s_stream playback; struct psc_i2s_stream capture; /* Statistics */ struct { int overrun_count; int underrun_count; } stats; }; /* * Interrupt handlers */ static irqreturn_t psc_i2s_status_irq(int irq, void *_psc_i2s) { struct psc_i2s *psc_i2s = _psc_i2s; struct mpc52xx_psc __iomem *regs = psc_i2s->psc_regs; u16 isr; isr = in_be16(®s->mpc52xx_psc_isr); /* Playback underrun error */ if (psc_i2s->playback.active && (isr & MPC52xx_PSC_IMR_TXEMP)) psc_i2s->stats.underrun_count++; /* Capture overrun error */ if (psc_i2s->capture.active && (isr & MPC52xx_PSC_IMR_ORERR)) psc_i2s->stats.overrun_count++; out_8(®s->command, 4 << 4); /* reset the error status */ return IRQ_HANDLED; } /** * psc_i2s_bcom_enqueue_next_buffer - Enqueue another audio buffer * @s: pointer to stream private data structure * * Enqueues another audio period buffer into the bestcomm queue. * * Note: The routine must only be called when there is space available in * the queue. Otherwise the enqueue will fail and the audio ring buffer * will get out of sync */ static void psc_i2s_bcom_enqueue_next_buffer(struct psc_i2s_stream *s) { struct bcom_bd *bd; /* Prepare and enqueue the next buffer descriptor */ bd = bcom_prepare_next_buffer(s->bcom_task); bd->status = s->period_bytes; bd->data[0] = s->period_next_pt; bcom_submit_next_buffer(s->bcom_task, NULL); /* Update for next period */ s->period_next_pt += s->period_bytes; if (s->period_next_pt >= s->period_end) s->period_next_pt = s->period_start; } /* Bestcomm DMA irq handler */ static irqreturn_t psc_i2s_bcom_irq(int irq, void *_psc_i2s_stream) { struct psc_i2s_stream *s = _psc_i2s_stream; /* For each finished period, dequeue the completed period buffer * and enqueue a new one in it's place. */ while (bcom_buffer_done(s->bcom_task)) { bcom_retrieve_buffer(s->bcom_task, NULL, NULL); s->period_current_pt += s->period_bytes; if (s->period_current_pt >= s->period_end) s->period_current_pt = s->period_start; psc_i2s_bcom_enqueue_next_buffer(s); bcom_enable(s->bcom_task); } /* If the stream is active, then also inform the PCM middle layer * of the period finished event. */ if (s->active) snd_pcm_period_elapsed(s->stream); return IRQ_HANDLED; } /** * psc_i2s_startup: create a new substream * * This is the first function called when a stream is opened. * * If this is the first stream open, then grab the IRQ and program most of * the PSC registers. */ static int psc_i2s_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; int rc; dev_dbg(psc_i2s->dev, "psc_i2s_startup(substream=%p)\n", substream); if (!psc_i2s->playback.active && !psc_i2s->capture.active) { /* Setup the IRQs */ rc = request_irq(psc_i2s->irq, &psc_i2s_status_irq, IRQF_SHARED, "psc-i2s-status", psc_i2s); rc |= request_irq(psc_i2s->capture.irq, &psc_i2s_bcom_irq, IRQF_SHARED, "psc-i2s-capture", &psc_i2s->capture); rc |= request_irq(psc_i2s->playback.irq, &psc_i2s_bcom_irq, IRQF_SHARED, "psc-i2s-playback", &psc_i2s->playback); if (rc) { free_irq(psc_i2s->irq, psc_i2s); free_irq(psc_i2s->capture.irq, &psc_i2s->capture); free_irq(psc_i2s->playback.irq, &psc_i2s->playback); return -ENODEV; } } return 0; } static int psc_i2s_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; uint bits, framesync, bitclk, value; u32 mode; dev_dbg(psc_i2s->dev, "%s(substream=%p) p_size=%i p_bytes=%i" " periods=%i buffer_size=%i buffer_bytes=%i\n", __func__, substream, params_period_size(params), params_period_bytes(params), params_periods(params), params_buffer_size(params), params_buffer_bytes(params)); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S8: mode = MPC52xx_PSC_SICR_SIM_CODEC_8; bits = 8; break; case SNDRV_PCM_FORMAT_S16_BE: mode = MPC52xx_PSC_SICR_SIM_CODEC_16; bits = 16; break; case SNDRV_PCM_FORMAT_S24_BE: mode = MPC52xx_PSC_SICR_SIM_CODEC_24; bits = 24; break; case SNDRV_PCM_FORMAT_S32_BE: mode = MPC52xx_PSC_SICR_SIM_CODEC_32; bits = 32; break; default: dev_dbg(psc_i2s->dev, "invalid format\n"); return -EINVAL; } out_be32(&psc_i2s->psc_regs->sicr, psc_i2s->sicr | mode); if (psc_i2s->sysclk) { framesync = bits * 2; bitclk = (psc_i2s->sysclk) / (params_rate(params) * framesync); /* bitclk field is byte swapped due to mpc5200/b compatibility */ value = ((framesync - 1) << 24) | (((bitclk - 1) & 0xFF) << 16) | ((bitclk - 1) & 0xFF00); dev_dbg(psc_i2s->dev, "%s(substream=%p) rate=%i sysclk=%i" " framesync=%i bitclk=%i reg=%X\n", __FUNCTION__, substream, params_rate(params), psc_i2s->sysclk, framesync, bitclk, value); out_be32(&psc_i2s->psc_regs->ccr, value); out_8(&psc_i2s->psc_regs->ctur, bits - 1); } snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); return 0; } static int psc_i2s_hw_free(struct snd_pcm_substream *substream) { snd_pcm_set_runtime_buffer(substream, NULL); return 0; } /** * psc_i2s_trigger: start and stop the DMA transfer. * * This function is called by ALSA to start, stop, pause, and resume the DMA * transfer of data. */ static int psc_i2s_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; struct snd_pcm_runtime *runtime = substream->runtime; struct psc_i2s_stream *s; struct mpc52xx_psc __iomem *regs = psc_i2s->psc_regs; u16 imr; u8 psc_cmd; long flags; if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) s = &psc_i2s->capture; else s = &psc_i2s->playback; dev_dbg(psc_i2s->dev, "psc_i2s_trigger(substream=%p, cmd=%i)" " stream_id=%i\n", substream, cmd, substream->pstr->stream); switch (cmd) { case SNDRV_PCM_TRIGGER_START: s->period_bytes = frames_to_bytes(runtime, runtime->period_size); s->period_start = virt_to_phys(runtime->dma_area); s->period_end = s->period_start + (s->period_bytes * runtime->periods); s->period_next_pt = s->period_start; s->period_current_pt = s->period_start; s->active = 1; /* First; reset everything */ if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) { out_8(®s->command, MPC52xx_PSC_RST_RX); out_8(®s->command, MPC52xx_PSC_RST_ERR_STAT); } else { out_8(®s->command, MPC52xx_PSC_RST_TX); out_8(®s->command, MPC52xx_PSC_RST_ERR_STAT); } /* Next, fill up the bestcomm bd queue and enable DMA. * This will begin filling the PSC's fifo. */ if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) bcom_gen_bd_rx_reset(s->bcom_task); else bcom_gen_bd_tx_reset(s->bcom_task); while (!bcom_queue_full(s->bcom_task)) psc_i2s_bcom_enqueue_next_buffer(s); bcom_enable(s->bcom_task); /* Due to errata in the i2s mode; need to line up enabling * the transmitter with a transition on the frame sync * line */ spin_lock_irqsave(&psc_i2s->lock, flags); /* first make sure it is low */ while ((in_8(®s->ipcr_acr.ipcr) & 0x80) != 0) ; /* then wait for the transition to high */ while ((in_8(®s->ipcr_acr.ipcr) & 0x80) == 0) ; /* Finally, enable the PSC. * Receiver must always be enabled; even when we only want * transmit. (see 15.3.2.3 of MPC5200B User's Guide) */ psc_cmd = MPC52xx_PSC_RX_ENABLE; if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) psc_cmd |= MPC52xx_PSC_TX_ENABLE; out_8(®s->command, psc_cmd); spin_unlock_irqrestore(&psc_i2s->lock, flags); break; case SNDRV_PCM_TRIGGER_STOP: /* Turn off the PSC */ s->active = 0; if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) { if (!psc_i2s->playback.active) { out_8(®s->command, 2 << 4); /* reset rx */ out_8(®s->command, 3 << 4); /* reset tx */ out_8(®s->command, 4 << 4); /* reset err */ } } else { out_8(®s->command, 3 << 4); /* reset tx */ out_8(®s->command, 4 << 4); /* reset err */ if (!psc_i2s->capture.active) out_8(®s->command, 2 << 4); /* reset rx */ } bcom_disable(s->bcom_task); while (!bcom_queue_empty(s->bcom_task)) bcom_retrieve_buffer(s->bcom_task, NULL, NULL); break; default: dev_dbg(psc_i2s->dev, "invalid command\n"); return -EINVAL; } /* Update interrupt enable settings */ imr = 0; if (psc_i2s->playback.active) imr |= MPC52xx_PSC_IMR_TXEMP; if (psc_i2s->capture.active) imr |= MPC52xx_PSC_IMR_ORERR; out_be16(®s->isr_imr.imr, imr); return 0; } /** * psc_i2s_shutdown: shutdown the data transfer on a stream * * Shutdown the PSC if there are no other substreams open. */ static void psc_i2s_shutdown(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; dev_dbg(psc_i2s->dev, "psc_i2s_shutdown(substream=%p)\n", substream); /* * If this is the last active substream, disable the PSC and release * the IRQ. */ if (!psc_i2s->playback.active && !psc_i2s->capture.active) { /* Disable all interrupts and reset the PSC */ out_be16(&psc_i2s->psc_regs->isr_imr.imr, 0); out_8(&psc_i2s->psc_regs->command, 3 << 4); /* reset tx */ out_8(&psc_i2s->psc_regs->command, 2 << 4); /* reset rx */ out_8(&psc_i2s->psc_regs->command, 1 << 4); /* reset mode */ out_8(&psc_i2s->psc_regs->command, 4 << 4); /* reset error */ /* Release irqs */ free_irq(psc_i2s->irq, psc_i2s); free_irq(psc_i2s->capture.irq, &psc_i2s->capture); free_irq(psc_i2s->playback.irq, &psc_i2s->playback); } } /** * psc_i2s_set_sysclk: set the clock frequency and direction * * This function is called by the machine driver to tell us what the clock * frequency and direction are. * * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN), * and we don't care about the frequency. Return an error if the direction * is not SND_SOC_CLOCK_IN. * * @clk_id: reserved, should be zero * @freq: the frequency of the given clock ID, currently ignored * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master) */ static int psc_i2s_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct psc_i2s *psc_i2s = cpu_dai->private_data; int clkdiv, err; dev_dbg(psc_i2s->dev, "psc_i2s_set_sysclk(cpu_dai=%p, freq=%u, dir=%i)\n", cpu_dai, freq, dir); if (dir == SND_SOC_CLOCK_OUT) { psc_i2s->sysclk = freq; if (clk_id == MPC52xx_CLK_CELLSLAVE) { psc_i2s->sicr |= MPC52xx_PSC_SICR_CELLSLAVE | MPC52xx_PSC_SICR_GENCLK; } else { /* MPC52xx_CLK_INTERNAL */ psc_i2s->sicr &= ~MPC52xx_PSC_SICR_CELLSLAVE; psc_i2s->sicr |= MPC52xx_PSC_SICR_GENCLK; clkdiv = ppc_proc_freq / freq; err = ppc_proc_freq % freq; if (err > freq / 2) clkdiv++; dev_dbg(psc_i2s->dev, "psc_i2s_set_sysclk(clkdiv %d freq error=%ldHz)\n", clkdiv, (ppc_proc_freq / clkdiv - freq)); return mpc52xx_set_psc_clkdiv(psc_i2s->dai.id + 1, clkdiv); } } return 0; } /** * psc_i2s_set_fmt: set the serial format. * * This function is called by the machine driver to tell us what serial * format to use. * * This driver only supports I2S mode. Return an error if the format is * not SND_SOC_DAIFMT_I2S. * * @format: one of SND_SOC_DAIFMT_xxx */ static int psc_i2s_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format) { struct psc_i2s *psc_i2s = cpu_dai->private_data; dev_dbg(psc_i2s->dev, "psc_i2s_set_fmt(cpu_dai=%p, format=%i)\n", cpu_dai, format); return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL; } /* --------------------------------------------------------------------- * ALSA SoC Bindings * * - Digital Audio Interface (DAI) template * - create/destroy dai hooks */ /** * psc_i2s_dai_template: template CPU Digital Audio Interface */ static struct snd_soc_dai psc_i2s_dai_template = { .type = SND_SOC_DAI_I2S, .playback = { .channels_min = 2, .channels_max = 2, .rates = PSC_I2S_RATES, .formats = PSC_I2S_FORMATS, }, .capture = { .channels_min = 2, .channels_max = 2, .rates = PSC_I2S_RATES, .formats = PSC_I2S_FORMATS, }, .ops = { .startup = psc_i2s_startup, .hw_params = psc_i2s_hw_params, .hw_free = psc_i2s_hw_free, .shutdown = psc_i2s_shutdown, .trigger = psc_i2s_trigger, }, .dai_ops = { .set_sysclk = psc_i2s_set_sysclk, .set_fmt = psc_i2s_set_fmt, }, }; /* --------------------------------------------------------------------- * The PSC I2S 'ASoC platform' driver * * Can be referenced by an 'ASoC machine' driver * This driver only deals with the audio bus; it doesn't have any * interaction with the attached codec */ static const struct snd_pcm_hardware psc_i2s_pcm_hardware = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER, .formats = SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE | SNDRV_PCM_FMTBIT_S32_BE, .rate_min = 8000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .period_bytes_max = 1024 * 1024, .period_bytes_min = 32, .periods_min = 2, .periods_max = 256, .buffer_bytes_max = 2 * 1024 * 1024, .fifo_size = 0, }; static int psc_i2s_pcm_open(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; struct psc_i2s_stream *s; dev_dbg(psc_i2s->dev, "psc_i2s_pcm_open(substream=%p)\n", substream); if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) s = &psc_i2s->capture; else s = &psc_i2s->playback; snd_soc_set_runtime_hwparams(substream, &psc_i2s_pcm_hardware); s->stream = substream; return 0; } static int psc_i2s_pcm_close(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; struct psc_i2s_stream *s; dev_dbg(psc_i2s->dev, "psc_i2s_pcm_close(substream=%p)\n", substream); if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) s = &psc_i2s->capture; else s = &psc_i2s->playback; s->stream = NULL; return 0; } static snd_pcm_uframes_t psc_i2s_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct psc_i2s *psc_i2s = rtd->dai->cpu_dai->private_data; struct psc_i2s_stream *s; dma_addr_t count; if (substream->pstr->stream == SNDRV_PCM_STREAM_CAPTURE) s = &psc_i2s->capture; else s = &psc_i2s->playback; count = s->period_current_pt - s->period_start; return bytes_to_frames(substream->runtime, count); } static struct snd_pcm_ops psc_i2s_pcm_ops = { .open = psc_i2s_pcm_open, .close = psc_i2s_pcm_close, .ioctl = snd_pcm_lib_ioctl, .pointer = psc_i2s_pcm_pointer, }; static u64 psc_i2s_pcm_dmamask = 0xffffffff; static int psc_i2s_pcm_new(struct snd_card *card, struct snd_soc_dai *dai, struct snd_pcm *pcm) { struct snd_soc_pcm_runtime *rtd = pcm->private_data; size_t size = psc_i2s_pcm_hardware.buffer_bytes_max; int rc = 0; dev_dbg(rtd->socdev->dev, "psc_i2s_pcm_new(card=%p, dai=%p, pcm=%p)\n", card, dai, pcm); if (!card->dev->dma_mask) card->dev->dma_mask = &psc_i2s_pcm_dmamask; if (!card->dev->coherent_dma_mask) card->dev->coherent_dma_mask = 0xffffffff; if (pcm->streams[0].substream) { rc = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev, size, &pcm->streams[0].substream->dma_buffer); if (rc) goto playback_alloc_err; } if (pcm->streams[1].substream) { rc = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev, size, &pcm->streams[1].substream->dma_buffer); if (rc) goto capture_alloc_err; } return 0; capture_alloc_err: if (pcm->streams[0].substream) snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer); playback_alloc_err: dev_err(card->dev, "Cannot allocate buffer(s)\n"); return -ENOMEM; } static void psc_i2s_pcm_free(struct snd_pcm *pcm) { struct snd_soc_pcm_runtime *rtd = pcm->private_data; struct snd_pcm_substream *substream; int stream; dev_dbg(rtd->socdev->dev, "psc_i2s_pcm_free(pcm=%p)\n", pcm); for (stream = 0; stream < 2; stream++) { substream = pcm->streams[stream].substream; if (substream) { snd_dma_free_pages(&substream->dma_buffer); substream->dma_buffer.area = NULL; substream->dma_buffer.addr = 0; } } } struct snd_soc_platform psc_i2s_pcm_soc_platform = { .name = "mpc5200-psc-audio", .pcm_ops = &psc_i2s_pcm_ops, .pcm_new = &psc_i2s_pcm_new, .pcm_free = &psc_i2s_pcm_free, }; /* --------------------------------------------------------------------- * Sysfs attributes for debugging */ static ssize_t psc_i2s_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct psc_i2s *psc_i2s = dev_get_drvdata(dev); return sprintf(buf, "status=%.4x sicr=%.8x rfnum=%i rfstat=0x%.4x " "tfnum=%i tfstat=0x%.4x\n", in_be16(&psc_i2s->psc_regs->sr_csr.status), in_be32(&psc_i2s->psc_regs->sicr), in_be16(&psc_i2s->fifo_regs->rfnum) & 0x1ff, in_be16(&psc_i2s->fifo_regs->rfstat), in_be16(&psc_i2s->fifo_regs->tfnum) & 0x1ff, in_be16(&psc_i2s->fifo_regs->tfstat)); } static int *psc_i2s_get_stat_attr(struct psc_i2s *psc_i2s, const char *name) { if (strcmp(name, "playback_underrun") == 0) return &psc_i2s->stats.underrun_count; if (strcmp(name, "capture_overrun") == 0) return &psc_i2s->stats.overrun_count; return NULL; } static ssize_t psc_i2s_stat_show(struct device *dev, struct device_attribute *attr, char *buf) { struct psc_i2s *psc_i2s = dev_get_drvdata(dev); int *attrib; attrib = psc_i2s_get_stat_attr(psc_i2s, attr->attr.name); if (!attrib) return 0; return sprintf(buf, "%i\n", *attrib); } static ssize_t psc_i2s_stat_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct psc_i2s *psc_i2s = dev_get_drvdata(dev); int *attrib; attrib = psc_i2s_get_stat_attr(psc_i2s, attr->attr.name); if (!attrib) return 0; *attrib = simple_strtoul(buf, NULL, 0); return count; } DEVICE_ATTR(status, 0644, psc_i2s_status_show, NULL); DEVICE_ATTR(playback_underrun, 0644, psc_i2s_stat_show, psc_i2s_stat_store); DEVICE_ATTR(capture_overrun, 0644, psc_i2s_stat_show, psc_i2s_stat_store); /* --------------------------------------------------------------------- * OF platform bus binding code: * - Probe/remove operations * - OF device match table */ static int __devinit psc_i2s_of_probe(struct of_device *op, const struct of_device_id *match) { phys_addr_t fifo; struct psc_i2s *psc_i2s; struct resource res; int size, psc_id, irq, rc; const __be32 *prop; void __iomem *regs; dev_dbg(&op->dev, "probing psc i2s device\n"); /* Get the PSC ID */ prop = of_get_property(op->node, "cell-index", &size); if (!prop || size < sizeof *prop) return -ENODEV; psc_id = be32_to_cpu(*prop); /* Fetch the registers and IRQ of the PSC */ irq = irq_of_parse_and_map(op->node, 0); if (of_address_to_resource(op->node, 0, &res)) { dev_err(&op->dev, "Missing reg property\n"); return -ENODEV; } regs = ioremap(res.start, 1 + res.end - res.start); if (!regs) { dev_err(&op->dev, "Could not map registers\n"); return -ENODEV; } /* Allocate and initialize the driver private data */ psc_i2s = kzalloc(sizeof *psc_i2s, GFP_KERNEL); if (!psc_i2s) { iounmap(regs); return -ENOMEM; } spin_lock_init(&psc_i2s->lock); psc_i2s->irq = irq; psc_i2s->psc_regs = regs; psc_i2s->fifo_regs = regs + sizeof *psc_i2s->psc_regs; psc_i2s->dev = &op->dev; psc_i2s->playback.psc_i2s = psc_i2s; psc_i2s->capture.psc_i2s = psc_i2s; snprintf(psc_i2s->name, sizeof psc_i2s->name, "PSC%u", psc_id+1); /* Fill out the CPU DAI structure */ memcpy(&psc_i2s->dai, &psc_i2s_dai_template, sizeof psc_i2s->dai); psc_i2s->dai.private_data = psc_i2s; psc_i2s->dai.name = psc_i2s->name; psc_i2s->dai.id = psc_id; /* Find the address of the fifo data registers and setup the * DMA tasks */ fifo = res.start + offsetof(struct mpc52xx_psc, buffer.buffer_32); psc_i2s->capture.bcom_task = bcom_psc_gen_bd_rx_init(psc_id, 10, fifo, 512); psc_i2s->playback.bcom_task = bcom_psc_gen_bd_tx_init(psc_id, 10, fifo); if (!psc_i2s->capture.bcom_task || !psc_i2s->playback.bcom_task) { dev_err(&op->dev, "Could not allocate bestcomm tasks\n"); iounmap(regs); kfree(psc_i2s); return -ENODEV; } /* Disable all interrupts and reset the PSC */ out_be16(&psc_i2s->psc_regs->isr_imr.imr, 0); out_8(&psc_i2s->psc_regs->command, 3 << 4); /* reset transmitter */ out_8(&psc_i2s->psc_regs->command, 2 << 4); /* reset receiver */ out_8(&psc_i2s->psc_regs->command, 1 << 4); /* reset mode */ out_8(&psc_i2s->psc_regs->command, 4 << 4); /* reset error */ /* Configure the serial interface mode; defaulting to CODEC8 mode */ psc_i2s->sicr = MPC52xx_PSC_SICR_DTS1 | MPC52xx_PSC_SICR_I2S | MPC52xx_PSC_SICR_CLKPOL; out_be32(&psc_i2s->psc_regs->sicr, psc_i2s->sicr | MPC52xx_PSC_SICR_SIM_CODEC_8); /* Check for the codec handle. If it is not present then we * are done */ if (!of_get_property(op->node, "codec-handle", NULL)) return 0; /* Set up mode register; * First write: RxRdy (FIFO Alarm) generates rx FIFO irq * Second write: register Normal mode for non loopback */ out_8(&psc_i2s->psc_regs->mode, 0); out_8(&psc_i2s->psc_regs->mode, 0); /* Set the TX and RX fifo alarm thresholds */ out_be16(&psc_i2s->fifo_regs->rfalarm, 0x100); out_8(&psc_i2s->fifo_regs->rfcntl, 0x4); out_be16(&psc_i2s->fifo_regs->tfalarm, 0x100); out_8(&psc_i2s->fifo_regs->tfcntl, 0x7); /* Lookup the IRQ numbers */ psc_i2s->playback.irq = bcom_get_task_irq(psc_i2s->playback.bcom_task); psc_i2s->capture.irq = bcom_get_task_irq(psc_i2s->capture.bcom_task); /* Save what we've done so it can be found again later */ dev_set_drvdata(&op->dev, psc_i2s); /* Register the SYSFS files */ rc = device_create_file(psc_i2s->dev, &dev_attr_status); rc = device_create_file(psc_i2s->dev, &dev_attr_capture_overrun); rc = device_create_file(psc_i2s->dev, &dev_attr_playback_underrun); if (rc) dev_info(psc_i2s->dev, "error creating sysfs files\n"); /* Tell the ASoC OF helpers about it */ of_snd_soc_register_platform(&psc_i2s_pcm_soc_platform, op->node, &psc_i2s->dai); return 0; } static int __devexit psc_i2s_of_remove(struct of_device *op) { struct psc_i2s *psc_i2s = dev_get_drvdata(&op->dev); dev_dbg(&op->dev, "psc_i2s_remove()\n"); bcom_gen_bd_rx_release(psc_i2s->capture.bcom_task); bcom_gen_bd_tx_release(psc_i2s->playback.bcom_task); iounmap(psc_i2s->psc_regs); iounmap(psc_i2s->fifo_regs); kfree(psc_i2s); dev_set_drvdata(&op->dev, NULL); return 0; } /* Match table for of_platform binding */ static struct of_device_id psc_i2s_match[] __devinitdata = { { .compatible = "fsl,mpc5200-psc-i2s", }, { .compatible = "fsl,mpc5200b-psc-i2s", }, {} }; MODULE_DEVICE_TABLE(of, psc_i2s_match); static struct of_platform_driver psc_i2s_driver = { .match_table = psc_i2s_match, .probe = psc_i2s_of_probe, .remove = __devexit_p(psc_i2s_of_remove), .driver = { .name = "mpc5200-psc-i2s", .owner = THIS_MODULE, }, }; /* --------------------------------------------------------------------- * Module setup and teardown; simply register the of_platform driver * for the PSC in I2S mode. */ static int __init psc_i2s_init(void) { return of_register_platform_driver(&psc_i2s_driver); } module_init(psc_i2s_init); static void __exit psc_i2s_exit(void) { of_unregister_platform_driver(&psc_i2s_driver); } module_exit(psc_i2s_exit);
Attachment:
dspeak01.dts
Description: Binary data
_______________________________________________ Alsa-devel mailing list Alsa-devel@xxxxxxxxxxxxxxxx http://mailman.alsa-project.org/mailman/listinfo/alsa-devel